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Abstract

We develop a novel probabilistic model for
graph matchings and develop practical infer-
ence methods for supervised and unsupervised
learning of the parameters of this model. The
framework we develop admits joint inference
on the parameters and the matchings. Fur-
thermore, our framework generalizes naturally
to K-partite hypergraph matchings or set
packing problems. The sequential formulation
of the graph matching process naturally leads
to sequential Monte Carlo algorithms which
can be combined with various parameter infer-
ence methods. We apply our method to image
matching problems, document ranking, and
our own novel quadripartite matching prob-
lem arising from the field of computational
forestry.

1 Introduction

A matching is a well-known combinatorial structure
derived from a graph, and consists of a set of edges
such that pairs of edges are required to have no com-
mon nodes. Matchings have important applications in
machine learning when a feature function is defined on
the nodes and edges of the graph. Given such a feature
function, the compatibility score of a matching is com-
monly defined as the dot product of the features and a
parameter vector θ ∈ Rp. Based on the compatibility
score we may optimize or compute expectations over
the space of matchings, for example to find the most
likely alignment of landmark points between two frames
of a video or of two images [1, 2], or of nucleotides in
related genomes [3, 4].

Two inter-related technical challenges are associated
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with such graph matching problems. The first chal-
lenge is parameter estimation for the matching models,
which arises in both supervised and unsupervised set-
tings. In the supervised setting, we are given a set
of labelled matchings and the task is to optimize over
the set of parameters to minimize a suitably chosen
empirical loss function [5]. The unsupervised setting
is typically based on a probabilistic approach, where
a probability distribution over the space of matchings
is defined [6]. One can then optimize over the param-
eters by marginalizing over matchings or by using an
Expectation-Maximization (EM) algorithm. The sec-
ond challenge consists of computation of expectations
over matchings E[f(M)], whereM is a matching-valued
random variable. This may arise for example in com-
puting the M step in an EM algorithm. Since the
simulation of matching-valued random variables is a
well-known #P hard problem, approximate inference
methods are needed.

We develop a model and method of inference that
addresses these two challenges. Our method is based
on viewing a matching as a sequential decision process,
where at each step, a node, selected at random or
deterministically, picks a match (if any) from among
the other nodes. Each decision is parameterized by
a locally normalized logistic regression model. We
demonstrate that using this local sequential view for
both the model and approximate inference is highly
beneficial. In particular, using it as the basis for the
model formulation sidesteps the need to estimate an
intractable normalization constant. This allows us
to approach parameter estimation, the first technical
challenge, both in the supervised and unsupervised
settings, using standard tools such as Monte Carlo
expectation maximization (MC-EM) [7] and stochastic
approximation (SA-EM) [8]. This compares favorably
to current models based on global Markov random
fields, where both maximum likelihood and Bayesian
parameter estimation requires specialized methods [9,
10]. While there has been work on using the local
sequential decision view for the basis of an MCMC
inference method over matchings [1], its application to
matching models has not been broadly studied. The
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Plackett-Luce model is a special case that has received
attention in the literature, where the matching is the
basis for constructing a ranking [11, 12, 13]. The local
sequential view has comparably been more popular in
other types of problems such as hidden Markov models
and parse trees [14].

We argue that a natural approach for performing ap-
proximate inference over matchings in the local model
context is to use Sequential Monte Carlo (SMC) al-
gorithms [15]. This yields a simple algorithm that
exploits the sequential structure of the model to ex-
plore the matching space efficiently, thus tackling the
second challenge. SMC methods have been successfully
applied to problems where the latent state space has a
combinatorial structure (e.g., [16, 17]) and theoretical
grounds for applying SMC methods for combinatorial
state spaces have recently been established [17, 18].
Furthermore, we can benefit from parallelization of the
computation that comes naturally with SMC meth-
ods; as well, methods such as [19, 20] which provide
mechanisms for using more particles as needed (auto-
matically) to ensure sufficient exploration of the space
of the latent variables.

Our work is motivated by a novel application in compu-
tational forestry, where the internal three-dimensional
tree branch structure of wood planks is reconstructed
by matching the surface knots. This application re-
quires a matching method that can be generalized to
quadripartite graph as each of the four long faces of a
wood plank represents a partition. This reconstructed
3-D structure is then used for predicting the strength
of lumber.

Approximation algorithms on matchings has been
approached in the literature using MCMC methods
[21, 22] and recently using SMC method by [23]. A
variational method has also been proposed [24]. A se-
quential Monte Carlo sampler for bipartite matching
was proposed in [25], but they do not address the prob-
lem of parameter estimation and do not account for the
overcounting problem [18], which occurs in hypergraph
matching problems. Such problems are of practical
importance, for example in our computational forestry
application.

2 Background

2.1 Notation

A hypergraph is a generalization of a graph where
each edge (or also called hyperedge) can connect any
number of nodes. Matching can then be formulated
as a set packing problem, where each edge is a set of
nodes. We denote a K-partite hypergraph by G =
(V1, ..., VK , E). We denote a node in Vk by vk,i, i =

1, 2, . . . , |Vk|. An edge e ∈ E is a set of nodes; for
example, an edge between two nodes v1,i, v2,j is denoted
by e = {v1,i, v2,j}. Bipartite matching is a special case
of K-partite set packing problem with two partitions
and each edge restricted to contain exactly two nodes,
one from each partition. A matching is represented by
a set of edges and we denote it by M or m (for random
variable and realization respectively) with the space of
all feasible matchings denoted byM.

2.2 Probabilistic models

We begin by describing a probabilistic formulation
of the matching problem on a bipartite graph, G =
(V1, V2, E). For ease of exposition, we will assume that
|V1| = |V2|. For bipartite matching, we can think of
matching m as a permutation m : V1 → V2. A proba-
bilistic formulation of the bipartite matching problem
in [6, 1] places a Gibbs measure on the matching:

P(M = m|θ) =
exp〈φ(m), θ〉∑

m′
exp〈φ(m′), θ〉 , (1)

where φ :M→ Rp is a feature function. However, the
summation in the denominator is intractable, ruling
out direct optimization over the parameters. Sampling
from a posterior distribution of θ with the likelihood
defined by Equation 1 is also difficult for the same
reason.

The authors of [1] define an MCMC proposal distri-
bution by constructing the bipartite matching itera-
tively. To do so, they introduce a reference sequence,
σ : {1, ..., |V1|} → {1, ..., |V1|}, which specifies the order
in which the nodes in V1 are visited. The reference
sequence randomizes the order in which the bipartite
matching is constructed. We briefly describe their con-
struction here. First, let v1,σ(t) be the node visited
at the t-th iteration. Let the partial matching up to
iteration t be denoted by mt−1, and let Vi,t−1 be the
nodes in Vi that have not been matched up to the
t-th iteration (note that m0 is the empty matching
and Vi,0 = Vi). Suppose the node v1,σ(t) decides to
match with the node v2,j ∈ V2,t−1, resulting in an edge
et = {v1,σ(t), v2,j}. The probability of this decision is
given by:

p(et|mt−1, θ) =
exp〈θ, φ(mt−1 + et)〉∑
e′t

exp〈θ, φ(mt−1 + e′t)〉
, (2)

where e′t = {v1,σ(t), v2,j′} for v2,j′ ∈ V2,t−1 and we have
overloaded the addition operator to denote by m+ e
an addition of an edge e to the matching m. Unlike in
Equation (1), the summation in the denominator can
be computed exactly in O(|V2|).
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This local multinomial model induces a Plackett-Luce-
type probability distribution on the complete matching,
m = {e1, ..., e|V1|}:

Q(m|σ, θ) =

|V1|∏
t=1

p(et|mt−1, σ, θ). (3)

The authors of [1] view Equation 3 as an approximation
of Equation (1), and develop an MCMC sampler for
matchings with proposal distribution given by Q. We
take this idea further and propose in Section 3 to replace
the distribution in Equation (1) by one that resembles
Equation (3). Doing so simplifies parameter estimation
as it yields a likelihood model for which pointwise and
gradient evaluation can be computed efficiently.

3 A Sequential Decision Model for
Matchings

We view the process of matching on a K-partite hy-
pergraph as that of set packing, where each node is
placed, sequentially, into a set of “similar” nodes. For
full generality, we define the reference sequence to visit
every node in the graph, σ : {1, ..., |V |} → {1, ..., |V |}.
This contrasts with the bipartite matching problem,
where it is sufficient to iterate over the nodes in only
one partition. Note that σ is a device that serves to
randomize the construction of matching and in full gen-
erality, it is viewed as a random variable. Each node
vσ(t) makes a decision, denoted by dvσ(t) , among the set
of available decisions, denoted by D(vσ(t),mt−1). Here,
we use mt−1 to denote the partial matching implied by
the sequence of decisions, {dvσ(1) , ..., dvσ(t−1)

} but we
will often omit mt−1 for notational simplicity and just
write D(vσ(t)). The decision dvσ(t) consists of potential
ways the node vσ(t) can be entered into the matching.
More precisely, picking d ∈ D(vσ(t)) means that the
partial edge e′ = d∪{vσ(t)} is to be added to the partial
matching mt, i.e. mt = mt−1 + e′ = mt−1\{d} ∪ {e′}.
We use the terminology partial edge, since for example
an edge with two nodes might be grown at a later
iteration t′ > t to an edge augmented with a third
node.

The decision set is user configurable to suit the problem
at hand. For example, in bipartite matching without
any restrictions, the decision candidates are V2,t−1 (i.e.,
any nodes in V2 that have not yet been matched). De-
pending on the problem at hand, we may also allow for
the decision set to include a singleton decision, where
the node is placed into a new set by itself. With our
formalism, this decision can be modelled with D(vσ(t))
containing an empty set.

We illustrate an example of a sequential set packing
process in Figure 1. There are four partitions in this

example, and the nodes are labelled in the order σ that
they are visited (i.e., the first node visited is the blue
node labelled 1 and so on). For illustration purposes,
assume that σ is given. In this illustration, we perform
pairwise matching. To be specific, D(vσ(t)) contains
any node that is in a different partition from vσ(t)
as a candidate for matching. In our computational
forestry experiments, we restrict the decision set to (i)
exclude any nodes that are beyond a certain distance
away and (ii) restrict each set to contain at most two
nodes. These additional constraints are motivated by
the application domain.

In the first step of this example, we visit the blue node
#1. The decisions available are to form a singleton
or to match with red node #2. In step 2, the only
decision available for the red node #2 is to select the
empty set, this is because the other nodes are beyond
the distance span configured into our decision set but
also because it is already contained in a set containing
two nodes.

We model the process of the node making a decision
amongst a list of available decisions by a multinomial
logistic model, where the number of categories depends
on the number of decisions available for the node. We
will denote ej ∈ D(vσ(t)) for j = 1, ..., |D(vσ(t))| and we
denote the edge chosen by node vσ(t) by edvσ(t) . The
conditional probability for vσ(t) to be placed into edge
ej given the partial matching, mt−1, is expressed by,

p(dvσ(t) |mt−1, σ, θ) =
exp〈φ(mt−1 + edvσ(t) ), θ〉

|D(vσ(t))|∑
j′=1

exp〈φ(mt−1 + ej′), θ〉
,

(4)
where φ is a feature vector taking as input a (partial)
matching. The likelihood of the complete sequence of
decisions is simply:

`(θ) =

|V |∏
t=1

p(dvσ(t) |mt−1, σ, θ). (5)

We emphasize that the benefit of this model is that we
can evaluate Equation (5) and compute its exact gradi-
ent efficiently, which permits numerical optimization of
the likelihood over the parameters using off-the-shelf
convex optimization routines such as L-BFGS [26].

4 Parameter Estimation

4.1 Unsupervised Learning via Monte Carlo
Expectation Maximization

We place an isotropic normal prior on the parameters,
and focus the discussion here on maximum a posteriori
(MAP) estimation of θ ∈ Rp using an EM algorithm
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Figure 1: (a) A 4-partite hypergraph representing a piece of lumber. The nodes are labelled in the order σ that
they are visited. Nodes outside the ‘distance span’ cannot reasonably belong to the same tree branch. (b) The
decision candidates where only the singleton and doubleton matching are permitted. See text for details.

[27]. Maximum likelihood estimation can be done in a
very similar fashion. We also discuss the prospects for
a full Bayesian analysis in the conclusion.

The posterior distribution over the parameters given the
sequence of decisions denoted by dσ can be expressed
as,

p(θ|dσ, σ) =
p(dσ, σ|θ)p(θ)
p(dσ, σ)

=
p(dσ|σ, θ)p(σ)p(θ)

p(dσ, σ)
.

(6)
Note that the denominator is independent of the param-
eters. In some problems, such as document ranking,
there exists a canonical ordering, making σ a fixed
quantity instead of a random one. When no canonical
ordering is provided by the context of the problem, we
place a uniform distribution over the reference sequence
σ, independent of the parameters.

The EM algorithm alternates between computing the
conditional expectation of the latent variables given
the current estimate of the parameters (E step), and
maximizing that expectation over the parameters (M
step):

Q(θ, θt) =
∑
dσ,σ

p(dσ, σ|θt) log p(θ|dσ, σ), (7)

θt+1 = argmaxθ Q(θ, θt). (8)

Here the summation is difficult to evaluate analytically,
and one may approximate it by generating samples
from p(dσ, σ|θt). Thus, the Monte Carlo E-step ap-
proximates the expectation by sampling and taking an
average over the sampled values:

Q̃(θ, θt) =
1

N

N∑
n=1

log p(dσn |σn, θ) + log p(σn)

+ log p(θ)− log p(dσn , σ
n), (9)

where (dσn , σ
n) ∼ p(dσ, σ|θt). Note that when we

are optimizing Equation (9) over the parameters, the

terms log p(σn), log p(dσn , σ
n) are independent of θ and

hence, need not be evaluated. Also note that if we place
an independent Gaussian prior on θ, then we essentially
obtain a log-likelihood with l2 penalty:

Q̃(θ, θt) =
1

N

N∑
n=1

log `(θ)− 1

2
λ‖θ‖2, (10)

where ` is defined in Equation (5). As mentioned earlier,
computing the gradient of ` is simple and efficient, and
we use L-BFGS to perform this maximization step.

4.2 Supervised Learning

In the supervised setting, we are given a set of train-
ing instances of graph matchings {mi}, i = 1, ..., I.
The posterior distribution of the parameters given the
training data can be expressed as follows:

p(θ|{mi}) ∝
I∏
i=1

p(mi|θ)p(θ) =

I∏
i=1

p(θ|mi)p(mi)

∝
I∏
i=1

p(θ|mi) =

I∏
i=1

∑
σi,dσi

p(θ, σi,dσi |mi)

=

I∏
i=1

∑
σi,dσi

p(θ|σi,dσi)p(σi,dσi |mi). (11)

Maximizing over the parameters provides the MAP
estimate: θ̂MAP = argmaxθ p(θ|{mi}). One approach
to supervised learning is to sample permutations σi,n,
n = 1, ..., N , from uniform distribution, then sampling
decision sequences j = 1, ..., J that lead to mi for each
σi,n, i.e., djσi,n ∼ p(d|σi,n) such that the decisions
djσi,n formulates mi. We found that when there are
large number of training instances, sampling just one
decision sequence led to good results as demonstrated
in the image matching experiments in Section 7.2.
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5 SMC Sampler for Matching

In this section, we develop an SMC sampler to draw
samples from p(dσ, σ|θ). This SMC sampler is used for
the Monte Carlo E-step of the MC-EM algorithm in
the unsupervised setting, and for drawing samples from
the posterior predictive distribution of matchings given
the parameters estimated in the supervised setting.

5.1 Notation and Background

The SMC samplers method [28] is an important exten-
sion to vanilla SMC methods, and allows for drawing
samples from an arbitrary state space by designing a
sequence of intermediate distributions such that the
final distribution coincides with the desired target dis-
tribution. One key idea in [28] is that of the backward
kernel, which plays an important role when applying
SMC to combinatorial problems. In this section, we
begin by specifying the notation needed to construct
the target and intermediate distributions as well as the
backward kernel required to ensure the correctness of
the SMC sampler for graph matching.

We remind the reader that the space of interest is the
space of matchings, denoted M. We generalize this
space and introduceMr, r = 1, ..., R, the space of par-
tial matching of size r (recall that a matching can be
viewed as a set, hence it has a size). Here, r indexes
iterations of the SMC algorithm and we will design
our SMC algorithm such that MR = M. The un-
normalized intermediate distributions will be denoted
by γr. We will use n = 1, ..., N to denote the index of
the N SMC particles. We denote by snr and wnr the
particle n at SMC iteration r and its associated un-
normalized weight. The normalized weights are denoted
by w̄nr = wnr /

∑
n′ w

n′

r . Recall also that the particles
and weights at the last iteration are used to approxi-

mate the expectation via E[f(M)] ≈
N∑
n=1

w̄nRf(snR).

5.2 Poset SMC

A key concept in developing an SMC sampler on a
combinatorial state space is the notion of partially
ordered set, (S,≺) introduced in [17]. The partial
order, ≺, is a binary relation on the elements of S that
is 1) reflexive, 2) anti-symmetric, and 3) transitive.
Note that not all elements of S are comparable. The
partially ordered set induces a Hasse diagram which is
an undirected graph G = (S, E) where the nodes are
the elements of the set S and the edge exists between
the nodes s, s′ ∈ S if s′ covers s, which is to say that
s ≺ s′ and there does not exist s′′ ∈ S such that
s ≺ s′′ ≺ s′.
The partial order endows the general state space with

sequential structure that is needed for SMC. Therefore,
a general recipe for defining an SMC sampler for graph
matching is to clearly define the state space S and the
initial state s0, as well as the proposal density, ν+ to
ensure that every state is reachable starting from s0.

5.3 SMC for Sequential Graph Matching

First, note that the target distribution p(dσ, σ|θ) can
be decomposed as follows:

p(dσ, σ|θ) =

|V |∏
r=1

p(dvσr(r) |mr−1, σr, θ)p(σr|σr−1).

(12)

This gives us our state space, Sr =Mr×Σr, whereMr

denotes the space of partial matching after r decisions
have been made and Σr is a set of all possible reference
sequences of size r: σr ∈ Σr is a partial map σr :
{1, ..., r} → {1, ..., |V |}. Equation (12) also provides
us with the intermediate un-normalized density: γr is
simply given by the first r factors in the product in
the right hand side of Equation (12). The sampling
strategy is as follows. At iteration r, each particle
samples a node vj at random from Vσnr−1

, and sets
σnr (r) = j (recall that Vσnr−1

denotes the nodes that
have not been visited up to iteration r). Alternatively, if
the order σ is specified by the structure of the problem,
vj is provided deterministically. Then, we formulate a
list of decisions for the sampled node, D(vσnr (r)), from
which we sample a decision, dvσnr (r)

. A natural proposal
density is provided by the model structure,

ν+(s
anr
r−1 → snr ) =p(dvσnr (r)

|mr−1, σ
n
r )×

p(σnr (r) = j|σa
n
r
r−1),

where p(σnr (r) = j|σa
n
r
r−1) = 1/|Vσnr−1

|, and the other
factor is provided by Equation (4). Note that anr is the
index of the parent particle.

5.4 Adjustments for Overcounting

ForK-partite hypergraph matching, there may be more
than one sequence of decisions that can lead to the same
matching. To illustrate, consider Figure 2, where there
are four nodes. The gray shaded ellipses denote a state
(partial matching) and the white ellipses denote the
edges in the matching. The initial state is an empty
matching. Consider the pairwise decision model used
for Figure 1 with the condition on the size of the edges
removed. There are

(
4
2

)
= 6 possible states at iteration 1

(note that the empty state is at iteration 0). At iteration
2, we have shown two of the possible states. The state
where an edge {1, 2, 3} is formed has three different
ways of being built whereas the state containing the
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edges {{1, 2}, {3, 4}} has two possibilities. To ensure
the correctness of the SMC algorithm, we need to
account for the different paths that lead to the same
state (i.e., the overcounting problem [18]).

{1,2,3}

{1, 2}

{1, 2}

{3, 4}
... ...

{1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

Figure 2: Illustration of the overcounting problem.

When the proposal density satisfies Assumptions (1)-
(3) in [17], overcounting cannot occur. This holds for
bipartite matching and the decision model correspond-
ing to the set packing view of matching. More details
and the proof is provided in the Appendix.

For K-partite matching with K > 2, a more general
solution is to incorporate an appropriate backward ker-
nel, ν−(snr → s

anr
r−1) as proposed in [18]. The backward

kernel amounts to 1[ν+(s
anr
r−1 → snr ) > 0]|Q(snr )|−1,

where Q(snr ) denotes the set of parent states of snr .

6 Bayes Estimator

We now describe how to construct a Bayes estimator
from matchings drawn by the SMC sampler. For an
estimator M̂ of the matching M we define the loss
function

L(M, M̂) =
∑
e∈M

1[e /∈ M̂ ] +
∑
e∈M̂

1[e /∈M ], (13)

i.e., the symmetric difference between the two match-
ings. The Bayes estimator corresponds to the matching
that minimizes the expected loss:

M̂BE = argminM̂ E[L(M,M̂)|θ], (14)

where the expectation is taken with respect toM . Since
we cannot evaluate this expectation exactly except for
small problems. We approximate it using the samples
{Mn}Nn=1 drawn by SMC:

E[L(M,M̂)|θ] ≈ 1

N

N∑
n=1

L(Mn, M̂).

So the Bayes estimator satisfies

M̂BE = argmin
M̂

N∑
n=1

 ∑
e∈Mn

1[e /∈ M̂ ] +
∑
e∈M̂

1[e /∈Mn]

 ,

i.e. it is the consensus matching, in the sense that it
is the least different from the other matchings in the
Monte Carlo samples. We approximate the consensus
matching using a greedy algorithm described in the
Appendix.

7 Experiments

7.1 Document Ranking

We begin by presenting results on a supervised learning
experiment where the order is provided by the structure
of the problem. With our model, supervised learning in
such context reduces to simple logistic regression train-
ing, which can be performed by convex optimization
using the exact gradient. In contrast, globally normal-
ized methods such as [6] require approximate inference
even in the supervised setting. These supervised learn-
ing experiments allow us to focus on the performance of
the model; evaluation of the SMC algorithm is deferred
to the subsequent subsections.

We apply the sequential decision model to the docu-
ment ranking task. For this problem, we are given a set
of documents for a given query, and our goal is to rank
the documents by relevance. As described in [6], the
document ranking task can be formulated as a bipartite
matching task where the task is to match the rank to
the documents with the goal of matching higher rank
with relevant documents and lower rank with irrelevant
documents. A common approach to this problem is to
use supervised learning methods where we are given
a dataset of queries and corresponding documents for
each query, where each document is labelled with a
relevance value. In fact, our sequential decision model
is related to the listwise approach proposed in [12]
when applied to the document ranking task, with the
difference that [12] uses neural networks and a custom-
defined loss function to estimate the model parameters
whereas we optimize the log-likelihood. We demon-
strate the effectiveness of our method on the LETOR
3.0 benchmark [29]. We performed experiments on the
OHSUMED and TD2003 datasets. In each of these
two datasets, we have a query and documents pair,
which we denote by {(qi, {xij , yij}Jij=1)}Ii=1, where I is
the total number of queries and Ji is the total number
of documents corresponding to query qi. Here, xij de-
notes the features for document j retrieved for query
qi and yij denotes the relevance label. For OHSUMED,
yij ∈ {0, 1, 2} and yij ∈ {0, 1} for TD2003.

To perform training, we adopt the mechanism used in
[6] where each query-document pair (qi, {xij , yij}) is
broken up to yield B training instances, each containing
L documents. Each training instance is obtained by
first choosing a document from each relevance class
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and then randomly sampling the rest of the documents
without replacement. The number of training instances
is then I × B. In [6], the experiments were carried
out with L ∈ {3, 4, 5}, partly due to the problem of
intractable summation arising for a larger value of L.
One advantage of our method is that we can experiment
with larger values of L, as intractable summation is
not a problem under our framework.

The metric we use for measuring the performance of
ranking on the test dataset is the standard NDCG@k
metric [6]. The performance of the sequential decision
model for k = 1, ..., 10 is shown in Figure 3 (a) and (b)
(the dotted red line). Our method attains a level of
performance that is competitive to the top methods,
and in some cases strictly better than all the other
methods.

7.2 Image Feature Matching

We now turn to the image matching experiment. This
experiment demonstrates a case where there is no nat-
ural order σ provided by the problem. For training,
we sampled a single sequence of decision σi,dσi for
each training instance i = 1, ..., I. The SMC algorithm
comes in at the prediction stage after having trained
the parameters. In this case σ is sampled jointly with
the decisions by our SMC algorithm.

We are given a pair of images containing 30 landmark
points. These landmark points correspond to the nodes
in the bipartite graph to be matched. We test our
method on the CMU House dataset, which was used
for evaluating a supervised graph matching algorithm
in [5]. There are 111 frames in the video, where each
frame is an image still with a slight modification from
the previous frame. Each landmark point u is associ-
ated with a shape context feature, f(u) ∈ R60

+ . For
any proposed matching (u, v), the feature function is
defined as: φp(u, v) = |fp(u)− fp(v)|, p = 1, ..., 60.

We split the data exactly as in [5] for ease of comparison.
For each l ∈ {25, 15, 10, 5, 3, 2}, the first scenario takes
the training set to be the images that are divisible by
l with the remaining as testing set, while the second
scenario takes the training set to be the images that are
not divisible by l and the testing set to be the images
that are divisible by l. Thus, a total of 12 scenarios
are tested.

In [5], Delaunay triangulation was performed on each
image yielding a graph structure Gi = (Vi, Ei) for
each image i = 1, ..., 111. We incorporate this graph
structure to extract edge features (pairwise affinities)
as follows. Suppose we are matching two images Gi
and Gi′ . Let mt−1 be the partial matching and let
e = {vi,j , vi′,k} be the proposed matching. For each

ej′k′ = {vi,j′ , vi′,k′} ∈ mt−1, we compute,

cj′k′ = 1[{vi,j , vi,j′} ∈ E1, {vi′,k, vi′,k′} /∈ E2]+

1[{vi,j , vi,j′} /∈ E1, {vi′,k, vi′,k′} ∈ E2].

Then, set φ61(mt−1 + e) = −∑j′k′ cj′k′ . The results
are shown in Figure 3 (c). Note that our method based
on the shape context feature outperforms the linear
assignment learning methodology used in [5], which
uses only the shape context features; likewise, our
method with the edge feature outperforms graduated
assignment learning, which uses the edge features.

7.3 Knot Matching

Our set packing methodology was motivated by a novel
application in computational forestry. An active area of
research in this field is the development of a computer
vision-based, automatic strength assessment system for
lumber (see for example [30]). Using high-resolution
images of the four wood surfaces (see Figure 7.1), the
first step is to detect and localize knots, which are rem-
nants of tree branches and known to be one of the most
important types of strength-reducing characteristic of
lumber. This step is carried out with standard tools
from image processing. The second step is to determine
which knot faces appearing on different surfaces come
from the same tree branch, which we call knot match-
ing. The methodology in this paper was developed
for this purpose. Finally, the knot information will
be input into a model for strength prediction, such as
the Bayesian statistical framework in [31]. The proba-
bilistic approach to matching is especially appealing in
this context since uncertainty in the matching repre-
sented by SMC samples can be easily propagated into
Bayesian strength prediction models.

To formulate the knot matching problem, we represent
each surface as a partition: V1, . . . , V4. Hypothetically,
a matching can contain up to 4 nodes but the vast
majority of the matching are doubletons (matching
with two nodes) with few 3-matchings. We have not
observed 3-matchings in our dataset so we focus on
2-matchings for the experiments, which corresponds
to formulating the decision set to allow for singletons
and doubletons. Furthermore, the decision set can be
reduced to exclude any knot faces that are beyond a
certain distance (refer to the distance span in Figure 1
(a)). This decision model corresponds to the decision
model used for illustrating Figure 1.

A natural sequence σ is given by the problem structure
in the sense that we can start from either end of the
board and proceed sequentially through the knot faces
as they appear. In our experiments, we did not observe
the direction to be having a noticeable impact on the
performance. Note that this sequence combined with
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Figure 3: The performance on (a) OHSUMED, (b) TD2003, (c) image matching.

Figure 4: The four sides of a board. The dark, circular objects are the knots to be matched.

Table 1: Results for the quadripartite matching problem from computational forestry.
Unsupervised Supervised

Board Num. Nodes Consensus MAP Learning No learning Time (s)

1 32 1.00 1.00 1.00 0.38 0.086
2 50 0.92 0.92 0.92 0.12 0.147
3 34 0.81 0.79 1.00 0.29 0.081
4 24 1.00 1.00 1.00 0.42 0.039
5 36 1.00 1.00 1.00 0.33 0.084

the “locality” of the knots help create fast mixing of the
SMC sampler – decisions made earlier in the sequence
do not have much effect on future decisions. This allows
us to achieve accurate results using only 100 particles
for prediction as well as at each iteration of MC-EM.

We have manually labelled 5 pieces of lumber for evalu-
ation only. The parameters were trained using MC-EM,
which was executed for 100 iterations. Upon termina-
tion, we found the consensus matching and compared
against the ground truth. For comparison, we have also
carried out supervised learning of the parameters via
leave-one-out procedure (i.e., held one board out for
testing, and trained on the rest). We used the consen-
sus matching as our prediction in the supervised setting
whereas in the unsupervised setting we have compared
the consensus matching as well as the maximum a
posteriori matching found in the samples. We have
also provided the timing results for prediction in the
supervised setting. The fast execution time allows for
implementation of our method for real time prediction
of strength. The results are summarized in Table 1.

8 Conclusion

We have presented a method for learning a graph
matching on a hypergraph by modelling the match-
ing as a sequence of local decisions. The sequential
decision model allows for incorporating the compati-
bility score in a similar fashion to the Gibbs measure
whilst addressing the parameter inference problem via
simple algorithms based on MC-EM combined with
sequential Monte Carlo samplers. We have focussed
on MAP parameter estimation, but our model is also
amenable to full Bayesian analysis. While globally
normalized models require doubly-intractable methods
for full Bayesian analysis [10], our model can be easily
combined to implement particle MCMC (PMCMC)
methods [32]. Compatibility with PMCMC also opens
the door to more advanced SMC methods (for example,
[33]). Finally, the code and the data is made available
at https://github.com/junseonghwan/sgmwsmc.
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