
Memory (and Time) Efficient SMC
Seong-Hwan Jun and Alexandre Bouchard-Côté
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Contribution: Implicit particle SMC

I Designed a new SMC algorithm that can use more particles (N ) than can fit in the
memory (K)

I Main idea: replay randomness

Motivation: SMC for Phylogenetics

Background: SMC

Replaying randomness

IPSMC: overview

1. Expansion
2. Implicit proposal

3. Normalization 4. Contraction

5. Concrete proposal Streaming particle IPSMC

Adaptive number of particles

Proposition 1: Let X1, . . . , XK ∼ Mult(w̄) independently, where
w̄ = (w̄1, . . . , w̄N). Then, we have

ψ(w,K) = E|{X1, . . . , XK}| = N −
N∑
i=1

(1− w̄i)K

IN(K,M) = sup{n ≤ N∗ : ψ(w,K) ≤M}; N∗ is a computational ceiling
IM is a tuning parameter

Proposition 2: Let S be the number of distinct particles sampled from a
multinomial distribution. Then, Var(S) ≤ 3K whenever maxi w̄i < 1/2. By
Chebyshev’s inequality, for ε > 0:

P(|S − ES| ≥ εES) ≤
3K

ε2(ES)2

Proposition 3 (consistency): Assume that the test function φ and the
un-normalized weights w are bounded, and that the proposal distributions ν satisfy
πr << νr−1,x. Then, ∫

φdπIPr,K
L2

−→
∫
φdπr

where πIPr,K = resK

(
propN(K,M) π

IP
r−1,K

)
. Here res is an operator that

corresponds to the contraction step and prop is an operator corresponding to

expansion and implicit proposal steps.

Time efficiency

Conclusion and Other applications

Designed a new SMC algorithm that can use more particles than can fit in memory.
I Probabilistic programming contexts (where proposal could be arbitrarily poor)
I State space models where transition dynamics cannot be evaluated point wise


