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Replaying randomness

Stochastic map

Contribution: Implicit particle SMC Adaptive number of particles

Proposition 1: Let X4,..., Xx ~ Mult(w) independently, where

» Designed a new SMC algorithm that can use more particles (IN) than can fit in the
w = (W1,y...,WyN). Then, we have

memory (K)

* Realization of a stochastic map: qu (:U)

T~ q(‘j) H €r = Q(Ua 37) * In practice, only need the seed (O(1) memory)

Un Unif(O, 1) » Can replay both the resampling and the proposal
steps

» Main idea: replay randomness N «
Y(w, K) =E{X1,...,Xg} =N—->) (1—w)
i=1

Motivation: SMC for Phylogenetics

» N(K,M) =sup{n < N*: ¢¥Y(w, K) < M}; N*is a computational ceiling
» M is a tuning parameter

IPSMC: overview

Memory per particle: ~100KB
for moderate sized data.

Proposition 2: Let S be the number of distinct particles sampled from a
multinomial distribution. Then, Var(S) < 3K whenever max; w; < 1/2. By

Problem: need to store many particles
simultaneously

 Elbow at around 10 million

particles
3
01128  Can only fit approx 40,000
é t) particles in a standard
o computer (8GB RAM)
91 [ « Our method allows to go all
.c:U' the way to 40 million
@) particles (under same
%’1 1200- constraint)
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Background: SMC

Generation r-1 Generation r
! | ! | P Resampling:
ir—l,k ~ MUIt(wr—l,l, R wr—l,K)
b .o "o » Proposal:
Lp,k q('lizr—l,k)
© O O » Weight computation:
K O— —»0 Wyp e += 'w(:Er_l,k — wr,k)
o O » Normalization (summation):
S < S+ wrg
O O >0 » Normalization (division):
| O—o0 10 S < Wrr/s
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K is a constant over generations

1. Expansion
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Xr—1,1y ey Xr—1]N|~ Mult(’lf)f,-_l,l, ceny ’lf)f,-_l,K)

3. Normalization
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5. Concrete proposal

Generation r-1 Generation r
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2. Implicit proposal

Generation r-1
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Xr,la vooy X’r‘,K ~ MUIt(’U_)T,la see; ?D

Streaming particle [IPSMC
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Chebyshev's inequality, for € > O:

P(|S — ES| > €ES) <

e2(ES)?

Proposition 3 (consistency): Assume that the test function ¢ and the
un-normalized weights w are bounded, and that the proposal distributions v satisfy

T, << Vp_14. lhen,
/ pdmll — / pd,
I

1P

— P '
where T,k — resk (propN(K’M) 7Tr_1,K>. Here res is an operator that

corresponds to the contraction step and prop is an operator corresponding to

expansion and implicit proposal steps.

Phylogenetics speed-up Ising Model
resu ltS SMC: k=100,000 « Problem gets difficult as T
« Computed the ratio of the IPSMC: K=1,000, N*=100,000 gets smaller
effective sample size per M '
seconds (ESS/s) for IPSMC = — * F);tpenment on 32x32
to the ESS/s for SMC 20 it atice
10-
2 1 § « Compare IPSMC to SMC
& €ss = — = K2 both given 1GB of RAM
> k1 O Q10 F
E ) ¢ Both methods give
1 p; comparable
. . v * Interested in the quality of o | | approximations of the true
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lteration samples generated per unit e marginals

of computation time

Conclusion and Other applications

Designed a new SMC algorithm that can use more particles than can fit in memory.

» Probabilistic programming contexts (where proposal could be arbitrarily poor)

P State space models where transition dynamics cannot be evaluated point wise




