
Entangled Monte Carlo

Seong-Hwan Jun Liangliang Wang Alexandre Bouchard-Côté

University of British Columbia, Vancouver, Canada

The sampling stage of Sequential Monte Carlo algorithm is easily parallelizable over multiple processors.
Sequential Monte Carlo algorithm depends on the resampling step to filter out the samples that are less
plausible. The experiments show that omitting the resampling step may lead to degenerate samples.
The resampling step is a critical component of Sequential Monte Carlo simulation.
Unfortunately, parallelizing Sequential Monte Carlo over multiple nodes is hard because of the resam-
pling step. The resampling step can cause the particles generated by different computing nodes to be
shuffled across different nodes. This requires the transmission of particles between the nodes.
We are interested in parallelization of Sequential Monte Carlo algorithm where the size of the particles
grows with the size of the problem.

Introduction

The components of Sequential Monte Carlo algorithm with K particles for r = 1, . . . , R generations can
be broadly categorized as: sample generation, weight computation, and resampling.

At time r = 0:

1. Sample s0,j ∼ q0(s0)

2. Compute the weights w0,j = w(s0,j) and normalize w̃0,j = w̃(s0,j) ∝ w0,j

3. Resample {w̃0,j, s0,j} to obtain K particles

At time r ≥ 1:

1. Sample sr,j ∼ qr(sr|s0:r−1,j)
2. Compute the weight wr,j and normalize w̃r,j ∝ wr,j

3. Resample K times with replacement from {w̃r,j, sr,j}Kj=1 particles

s1,1

s1,2

s1,3

w1,1 = 0.03

w1,2 = 0.02

w1,3 = 0.08

s1,1

s1,3

s1,2

s2,1

s2,3

s2,2

~

~

~

s2,1

s2,3

s2,2

w2,1 = 0.12

w2,2 = 0.2

w2,3 = 0.02

Resampling Proposal Weighting

Sequential Monte Carlo on one node

The sample generation step to generate K particles is the most time consuming step in the above algo-
rithm. However, if the simulation is carried out over a single node, the sample generation step can be
parallelized over multiple CPUs or GPUs. In this sense, it is already “embarrassingly” parallelizable.

Sequential Monte Carlo on M nodes

At time 0, each node m would be allocated Km particles such that
∑M
m=1Km = K. The number of

particles allocated to node m would depend on its capacity. The particle weights needs to be exchanged
between the nodes in order to normalize the weights, which would then be used for the resampling step.
After the resampling step is completed, it is possible that the number of particles in an arbitrary node
m to exceed its capacity, Km. The surplus particles need to be allocated to other node that are in deficit;
this step requires transmission of the particles from the node in surplus to the node in deficit. Therefore,
parallelizing Sequential Monte Carlo algorithm over multiple nodes is not so straight forward.

Background: Sequential Monte Carlo

The resampling step uses the normalized particle weights to sample the particles. Similar to bootstrap-
ping, the resampling step is with replacement, which means that a particle with high weight may be
resampled multiple times. The particles that are resampled survive to the next generation. In essence,
the resampling step induces genealogy of particles.

Genealogy

Scalable parallelization of Sequential Monte Carlo over multiple nodes

The Entangled Monte Carlo simulation achieves scalable parallelization of Sequential Monte Carlo algo-
rithm by relying on the reconstruction of the particles in lieu of particle transmission. Because we have
the particle genealogy where it completely specifies the use of randomness in generating the samples,
we can reconstruct sample of any particle by tracing back its genealogy.

Algorithm 1 : EMC(α, ν, h, I0)
1: (F ,G ,H)← entangle(ν)
2: s← empty-hashtable
3: ρ← empty-genealogy
4: init(s, w)
5: for r ∈ {1, . . . , R} do
6: exchange(wr−1)
7: resample(wr−1, ρ, Ir−1,G)
8: Ir ← allocate(ρ, Ir−1,H)
9: for i ∈ Ir do

10: s(i)← reconstruct(s, ρ, i,F)
11: wr,k(i) ← α(s(ρ(i)), s(i))

12: end for
13: end for
14: process(s, w, h)

Local view

For reconstruction of particles to work, each node needs to store the genealogy of all particles. To mini-
mize the storage, each node stores light-weight version of the particles referred to as compact particles.

components decreases by one at every step. More precisely, we will build each

rooted X-tree t by proposing a sequence of X-forests s1, s2, . . . , sR = t, where

an X-forest sr = {(ti, Xi)} is a collection of rooted Xi-trees ti such that the

disjoint union of leaves of the trees in the forest is equal to the original set of

leaves, �iXi = X. Note that with this specific construction, a forest of rank r

has |X| − r trees.

The sets of partial states considered in this Section are assumed to satisfy

the following three conditions:

1. The sets of partial states of different ranks should be disjoint, i.e. Sr∩Ss

for all r �= s (in phylogenetics, this holds since a forest with r trees cannot

be a forest with s trees when r �= s).

2. The set of partial state of smallest rank should have a single element

denoted by ⊥, S1 = {⊥} (in phylogenetics, ⊥ is the disconnected graph

on X).

3. The set of partial states of rank R should coincide with the target space,

SR = X (in phylogenetics, at rank R = |X|−1, forests have a single tree

and are members of the target space X).

These conditions will be subsumed by the more general framework of Sec-

tion 4.5, but the more concrete conditions above help understanding the poset

framework.

In order to grow particles from one rank to the next, the user needs to

specify a proposal probability kernel ν+. Given an initial partial state s and

a set of destination partial states A, we denote the probability of proposing

an element in A from s by ν+
s (A). In the discrete case, we abuse the notation

14

r

1

2

3

Compact particles

The compact particles have a small memory footprint since they only require to store:

•A Stochastic map for each generation
•A parent pointer for each compact particle

A compact particle has miniscule impact on the memory. However, it can be a problem to scaling the
Entangled Monte Carlo simulation if the number of compact particles is extremely large. We address
this concern by referring to Kingman’s coalescent theory.

Stochastic maps

The term stochastic maps comes from the perfect simulation literature based on the seminal work of
Propp and Wilson in the late 90’s [3]. Given the state space S, a stochastic map F is defined as

F : S × [0, 1]→ S
Concretely, given an update function t(U, s), where U ∼ Unif(0, 1), we can write F (s) = t(U, s). In the
settings of Markov chain, we can start the chain at an arbitrary state x0 ∈ S and obtain the sample after
N iterations by sampling F1, . . . , FN maps iid and compose the maps Fn(. . . (F1(x0)) . . .).

Entangled Monte Carlo

To reconstruct a particle, we need to compose the
stochastic maps of the ancestors of the target parti-
cle. It can be implemented using a while-loop that
traces back until common ancestor is found. The
loop is guaranteed to terminate because there is a
common source of randomness in which all ran-
domness is generated from.

Algorithm 2 : reconstruct(s, ρ, i,F = {Fi : i ∈ I})
1: F ← I

2: while (s(i) = nil) do
3: F ← F ◦ Fi
4: i← ρ(i)

5: end while
6: return F (s(i))

Reconstruction
The particle allocation step achieves load balancing by
ensuring that each node generates samples according
to its capacity Km. We recommend greedy allocation
schemes where each node tries to keep as many par-
ticles as possible before allocating the surplus to other
nodes. For the experiments, we have tried the following
schemes:

• FIRST-OPEN: assignment based on a pre-complied list
of preferred nodes.
•MOST-AVAILABLE: based on the capacity remaining.
• RANDOM: randomly assigns to a node with deficit.

This method spreads the particles evenly across the
nodes, which can shorten the reconstruction time.

Particle allocation

The potential problems with the Entangled Monte Carlo simulation is that of the memory usage and the
expected reconstruction time. The reconstruction time depends on the allocation scheme as well as the
transition kernel, which is the subject of future work. Here, we refer to Kingman’s coalescent theory,
which provides (1 − 1/k)/(1 − 1/K) as the expected time spent waiting for the last k copies to coalesce
([2, 1]).
If there are K = 1, 00, 000 particles in the simulation and if k = 2,

(1− 1/2)

1− 1/1, 000, 000
= 0.5

so we expect to wait 50%, of the time for the last two particles to coalesce. In other words, 999, 998
particles would have coalesced in the first 50% of the time.

Number of Machines

Sp
ee

du
p

5S proteobacteria dataset with 100 taxa

Denoting N1 as the total number of times the stochastic maps are applied and NM as the total number of
times the stochastic maps are applied in an Entangled Monte Carlo simulation involving M nodes, the
speedup factor is computed as, SM =M N1

NM
.

This experiment verifies that the reconstruction rarely traces deep and the allocation schemes suggested
perform comparably to one another.

Kingman’s coalescent

The total runtime of Entangled Monte Carlo is compared against total run time of Sequential Monte
Carlo as the number of particles is increased. The Entangled Monte Carlo (blue line) clearly outperforms
Sequential Monte Carlo (red line).

500 1000 1500 2000 2500 3000

0
20
00
00

40
00
00

60
00
00

80
00
00

10
00
00
0

14
00
00
0 Total run time of EMC versus Particle transfer

of particles

Ti
m

e
(m

ill
is

ec
on

ds
)

This is attributable to the fact that:

1. CPU cycles faster than communication via network protocol and,
2. Reconstruction rarely traces deep as predicted by Kingman’s coalescent.

Experiments

The Entangled Monte Carlo achieves parallelization of Sequential Monte Carlo independent of the parti-
cle size by reconstructing the particles from the particle genealogy. The future work involves extending
the method to implement storage of particle genealogy using distributed hash table, which will allow En-
tangled Monte Carlo to be extended to be applied to situation such as BOINC.

Conclusion

[1] J. Felsenstein. Inferring phylogenies. Sinauer Associates, 2003.

[2] J. F. C. Kingman. On the Genealogy of Large Populations. Journal of Applied Probability, 19:27–43, 1982.

[3] J. Propp and D. Wilson. Coupling from the past: a user’s guide, 1997.

References

