
STAT 570 Probabilistic Machine Learning
Assignment 1

Problem 1: Monty Hall

We will apply Bayesian reasoning to the Monty Hall problem.

There are 𝑁 doors, labelled 1 to 𝑁 . Behind each door, there is a goat, except one where there
is a car. You select a door, say 𝑖-th door, hoping to find the car behind it. The show host
then opens all of the doors except for the 𝑖-th door and another door, 𝑗. Let 𝐻𝑛 represent
hypothesis that car is behind door 𝑛 and 𝑌 denote the unopened door.

Q1 (2 points). Derive expression for posterior 𝑃(𝐻𝑛|𝑌 = 𝑗) for 𝑛 = 1, ..., 𝑁 .

Q2 (1 point). Implement monty_hall_posterior function in file problem1.py. Return a
numpy array of length 𝑁 such that the 𝑛-th element stores 𝑃(𝐻𝑛−1|𝑌 = 𝑗).

Problem 2: Monte Carlo integration

Q1 (2 points). (Naïve Monte Carlo) Estimate the value of 𝜋. Implement monte_carlo_pi in
problem2.py.

Q2 (2 points). (Quasi Monte Carlo) We will again estimate 𝜋 but use a specialized random num-
ber generator called Sobol sequence. Implement quasi_monte_carlo_pi in problem2.py.

Q3 (1 point). Briefly explain the idea behind QMC. How does QMC achieve faster rate of
convergence?

1

Problem 3: Rao-Blackwellization

Let 𝑋 be a random variable with density given by 𝑓𝑥(𝑥). The goal is to estimate expectation
𝐼 = 𝔼𝑋[𝑔(𝑋)]. The naïve Monte Carlo estimator is given by,

̂𝐼 = 1
𝑁 ∑

𝑖
𝑔(𝑥𝑖),

where 𝑥𝑖 ∼ 𝑓𝑥 denote i.i.d samples of 𝑋.

Now, suppose we have an auxiliary variable 𝑌 such that the joint density 𝑓𝑥,𝑦(𝑥, 𝑦) =
𝑓𝑦(𝑦)𝑓𝑥|𝑦(𝑥|𝑦) and the marginalization with respect to 𝑌 yields 𝑓𝑥(𝑥) = ∫ 𝑓𝑥,𝑦(𝑥, 𝑦)𝑑𝑦. Then,
we can formulate an alternative estimator for 𝐼 :

̂𝐼∗ = 1
𝑁 ∑

𝑖
𝔼𝑥|𝑦[𝑔(𝑋)|𝑦𝑖],

where 𝔼𝑥|𝑦[𝑔(𝑋)|𝑦] = ∫ 𝑔(𝑥)𝑓𝑥|𝑦(𝑥|𝑦)𝑑𝑥 and 𝑦𝑖 ∼ 𝑓𝑦(𝑦).

Q1 (2 points). Show that 𝔼𝑌 [̂𝐼∗] = 𝐼 (unbiased) and 𝑣𝑎𝑟(̂𝐼∗) ≤ 𝑣𝑎𝑟(̂𝐼) (variance reduction).

If conditional expectation 𝔼𝑥|𝑦[𝑔(𝑋)|𝑦] can be computed in closed form, the Rao-
Blackwellization yields variance reduction by replacing the problem of sampling from
𝑓𝑥 to that of sampling from 𝑓𝑦.

Let (𝑋, 𝑌) follow a bivariate Gaussian distribution with parameters 𝜇 and Σ.

Q2 (1 points). (Tail probability estimation) Implement function gaussian_tail in
problem3.py to estimate 𝑃(𝑋 > 𝑥0) using naive Monte Carlo.

Q3 (4 points). (Rao-Blackwellized estimator) Implement gaussian_tail_rb in problem3.py
to estimate 𝑃(𝑋 > 𝑥0) using Rao-Blackwellization.

Q4 (3 points). Generate a plot to compare the variance of the estimators from Q2 and Q3
for 1𝑒5 Monte Carlo samples. Clarify the distinction between variance and the convergence
rate.

Problem 4: Optimization

Let 𝑌𝑖𝑗 ∼ Multinomial(𝜋𝑖) where 𝜋𝑖 is given by the softmax regression,

𝜋𝑖𝑗 = exp(𝑥𝑇
𝑖 𝛽𝑗)

∑𝑗′ exp(𝑥𝑇
𝑖 𝛽𝑗′) .

2

• Define a multinomial regression model using PyTorch’s torch.nn.Module.
• Use autograd to compute gradients for optimization.
• Optimize the model parameters.

Q1 (3 points). Currently, multinomial_regression.py implements the log likelihood function.
We will incorporate Normal prior on 𝛽𝑗 and optimize the posterior.

1. First, implement log_prior in problem4.py.
2. Write a new function log_posterior in problem4.py that combines log likelihood and

log prior.
3. Finally, define and implement optimize function, taking in number of iterations as

argument and optimizes the parameters of Multinomial regression model. Refer to
MultinomialRegression.ipynb.

Q2 (2 points). Implement std_err function in problem4.py. Use autograd functionality of
PyTorch to obtain the Hessian and hence, the standard error estimates for each 𝛽𝑗’s. Report
the results using a figure and state which variables were selected as significant.

3

	Problem 1: Monty Hall
	Problem 2: Monte Carlo integration
	Problem 3: Rao-Blackwellization
	Problem 4: Optimization

