
STAT 570 Probabilistic Machine Learning
Assignment 2

Problem 1: Mobile health application

In this assignment you will develop a hidden Markov Model (HMM) to model daily step counts
recorded by a mobile device. The setup is as follows:

• Observations: 𝑌𝑡 denotes the number of steps measured by the mobile device for day 𝑡
(𝑡 = 1, ..., 𝑇).

• Hidden states: 𝑋𝑡 denotes a latent state representing the subject’s activity level. The
state space is

𝒳 = {low, medium, high}.

• State dynamics: the hidden states evolve as a Markov chain with a 3x3 transition matrix
𝑃 . Specifically,

𝑃(𝑋𝑡 = 𝑥′|𝑋𝑡−1 = 𝑥) = 𝑃 𝑥,𝑥′ 𝑥, 𝑥′ ∈ 𝒳.

• Emission model: The observation on day 𝑡 is modeled by a Poisson distribution:

𝑌𝑡|𝑋𝑡 = 𝑥 ∼ Poisson(𝜆𝑥), 𝑥 ∈ 𝒳.

We denote the full parameter set by

𝜃 = (𝜇, 𝑃 , 𝜆),

where 𝜇 denotes the initial distribution, 𝑃 denotes the transition matrix, and 𝜆 =
(𝜆𝑙𝑜𝑤, 𝜆𝑚𝑒𝑑, 𝜆ℎ𝑖𝑔ℎ) denotes the Poisson rates corresponding to each state.

1

Q1. Forward-Backward recursion (20 points)

Implement the forward-backward recursion and compute the marginal likelihood 𝑝(𝑦1∶𝑇 |𝜃).

Instructions

Write function forward(y, theta) in problem1.py. Your function should return a Numpy
array of dimension 𝐾×𝑇 , where each column stores log 𝛼𝑡(𝑥𝑡) = log 𝑝(𝑥𝑡, 𝑦1∶𝑡) at time 𝑡. Imple-
ment function backward(y, theta) in problem2.py. This function should return a Numpy ar-
ray containing log 𝛽𝑡(𝑥𝑡) = log 𝑝(𝑦𝑡+1∶𝑇 |𝑥𝑡). Then, implement marginal_log_likelihood(y,
theta), which returns a single numeric value (a float).

Q2. Baum-Welch (20 points)

Implement the EM algorithm to estimate the unknown parameters 𝜇 and 𝜆𝑥, while keeping 𝑃
fixed. Load the data file steps.csv. This file contains 𝑁 ×𝑇 matrix of sequence of steps from
𝑁 = 30 subjects over 𝑇 = 365 days. Plot the point estimates for 𝜇 and 𝜆𝑛, for 𝑛 = 1, ..., 𝑁
and briefly comment on the results.

Instructions

Step 1: Express the complete data log-likelihood log 𝑝(𝑥1∶𝑇 , 𝑦1∶𝑇 |𝜃).
For each iteration 𝑖 = 1, ..., 𝐼 of EM algorithm, we perform the following steps.

1. E-step. Write out the Q-function:

𝑄(𝜃|𝜃𝑖) = 𝔼𝑋1∶𝑇 ∼𝑝(⋅|𝑦1∶𝑇 ,𝜃𝑖)[log 𝑝(𝑋1∶𝑇 , 𝑦1∶𝑇 |𝜃)].

Identify the expression for a quantities that depends only on the parameters 𝜃𝑖.

2. M-step. 𝜃𝑖+1 = argmax𝜃𝑄(𝜃|𝜃𝑖).

Derive the update equation for 𝜇𝑥 and 𝜆𝑥 for 𝑥 ∈ 𝒳.

Write a function em(Y, iterations, mu_init, lambda_init, P).

• Y is a Numpy array of dimension 𝑁 × 𝑇 storing the sequences of observed steps from
multiple subjects.

• iterations is the number of EM iterations.
• mu_init is the initial distribution.
• lambda_init is the numpy array of length 3.
• P is the transition matrix (we will keep this fixed).

2

The function should return a tuple of two Numpy arrays 𝜇 of dimension 3 and 𝜆 of dimension
𝑁 × 3.

Q3: Modeling (10 points)

Propose ideas for extending the HMM. We want to capture the distribution of observed steps
over a larger population and incorporate additional information to better model the steps.

Instructions

In a written answer, describe how you would extend the model to incorporate:

• individual specific covariates (e.g„ age, gender),
• contextual information such as weather, weekday vs weekend to account for missing data

or low step counts on active days,
• how would you utilize the information across 𝑁 subjects to improve the estimation for

𝜆𝑥 parameters?

Explain your modeling strategy (for example, how you might let the Poisson rate depend
on covariates via a log-linear model, or how you might let transition probabilities depend on
context via logistic regression). No code implementation is necessary.

Problem 2: Phylogenetic tree likelihood

In this problem we will work with phylogenetic trees. We are given a fixed tree topology,
observed character data at the leaves, and a substitution model.

• A fixed topology 𝑇 = (𝑉 , 𝐸, 𝑏) where,

– 𝑉 is the set of nodes
– 𝐸 is the set of edges,
– 𝑏 ∶ 𝐸 → (0, ∞) is a branch length for each 𝑒 ∈ 𝐸.

• A set of leaf nodes 𝐿 ⊂ 𝑉 for which molecular sequences are observed.
• A substitution model that governs the evolution of characters along branches. This is

specified by a tuple (𝜋, 𝑄) where 𝑄 denotes the rate matrix of continuous time Markov
chain and 𝜋 denotes the stationary distribution.

• At each node 𝑣 ∈ 𝑉 , we have a random molecular sequence denoted by 𝑌𝑣

– The character at loci 𝑠 is denoted 𝑌𝑣,𝑠 for 𝑠 = 1, ..., 𝑆.
– The value taken by 𝑌𝑣,𝑠 is denoted by Σ = {𝐴, 𝐶, 𝐺, 𝑇 }.
– The characters evolve independently across site 𝑠.

3

Q1. Felsenstein pruning algorithm – bottom-up pass (20 points)

Compute the likelihood 𝑝(𝑌𝐿) by marginalization of the sequences at the internal nodes 𝑣 ∈
𝑉 ∖ 𝐿. To that end, you will implement a dynamic programming algorithm, making a bottom-
up pass over the given tree 𝑇 .

Instructions

Implement bottom_up_pass(obs, root, ctmc_model) in problem2.py. Your function
should return a python dictionary, where key is given by the nodes 𝑣 ∈ 𝑉 and the value is a
numpy array of dimension |Σ| × 𝑆.

Implement marginal_likelihood(bottom_up_table, pi) that returns a single float, the
marginal likelihood 𝑝(𝑦𝐿). The argument bottom_up_table represents the dynamic program-
ming tables for each node 𝑣, returned from a call to bottom_up_pass and pi is the stationary
distribution of CTMC.

• Familiarize yourself with the implementation of tree in node.py and jukes_cantor.py.
• The dynamic programming table for each node stores 𝑃(𝑌⌊𝑣⌋|𝑌𝑣,𝑠 = 𝑦), where 𝑌⌊𝑣⌋ de-

notes the leaf nodes at the subtree of 𝑇 rooted at 𝑣 and 𝑦 ∈ Σ.
• Begin by examining how the dynamic programming tables for the leaf nodes are con-

structed (construct_dp_table).

Q2. Two pass algorithm (25 points)

Following bottom-up pass, we would like to impute the sequences at the internal nodes of the
tree by incorporating all of the observations. To that end, we will derive the message passing
algorithm to facilitate the top-down pass. First, consider the following tree and its factor
graph representation.

4

• Derive the bottom-up messages coming from 𝑣, 𝑤 to node 𝑢 via 𝑓𝑢𝑣 and 𝑓𝑢𝑤.
• Derive top-down messages from node 𝑢 to factor node 𝑓𝑢𝑣.
• Generalize this to complete the top-down pass.

Instructions

Implement two_pass_algorithm(obs, root, ctmc_model) in problem2.py. Your function
should return a dictionary with key given by the nodes 𝑣 ∈ 𝑉 and the value given by a numpy
array of dimension |Σ| × 𝑆, storing the probability mass function over each possible value for
𝑌𝑣,𝑠 ∈ Σ at site 𝑠. The entry of the table stores 𝑃(𝑌𝑣,𝑠 = 𝑦, 𝑌⌈𝑣⌉) for 𝑦 ∈ Σ for 𝑠 = 1, ..., 𝑆 and
𝑌⌈𝑣⌉ denote the observations 𝑌𝐿 ∖ 𝑌⌊𝑣⌋.

Q3. Ancestral sequence reconstruction (5 points)

For a given internal node 𝑣 ∈ 𝑉 ∖ 𝐿, return the most likely sequence 𝑦𝑣.

Instructions

Implement reconstruction(v, bottom_up_dt, top_down_dt) in problem2.py, where
bottom_up_dt, top_down_dt denote bottom-up and top-down dynamic programming tables
constructed via calls to two_pass_algorithm. v is the query node. Return 𝑌𝑣,𝑠 a string of
length 𝑆.

5

	Problem 1: Mobile health application
	Q1. Forward-Backward recursion (20 points)
	Q2. Baum-Welch (20 points)
	Q3: Modeling (10 points)

	Problem 2: Phylogenetic tree likelihood
	Q1. Felsenstein pruning algorithm – bottom-up pass (20 points)
	Q2. Two pass algorithm (25 points)
	Q3. Ancestral sequence reconstruction (5 points)

