
Optimization and Sampling

Goals

• Dual nature of optimization (differentiation) and sampling (integration) as core ap-
proaches to posterior inference.

– Optimization: approximate the posterior by finding maximum/minimum, typically
involving differentiation.

– Sampling: draw samples from the posterior and approximate the integration.

Sampling: model selection

Many tasks in probabilistic machine learning boil down to computing an expectation (inte-
gral).

Marginal likelihood for model selection:

𝑝(𝐷|𝑀) = ∫ 𝑝(𝐷|𝜃𝑀 , 𝑀)𝑝(𝜃𝑀 |𝑀)𝑑𝜃𝑀 .

Sampling: prediction

Predictive distribution:

𝑝(𝐷∗|𝐷) = ∫ 𝑝(𝐷∗|𝜃)𝑝(𝜃|𝐷)𝑑𝜃.
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Sampling: hypothesis testing

p-values:

𝑃(𝜃 > 𝜃0|𝐷) = ∫
∞

𝜃0

𝑝(𝜃|𝐷)𝑑𝜃.

Sampling: other examples

• Moments (mean, variance, skewness, kurtosis)
• EM-algorithm (expectation to marginalize out the latent variables)
• CDFs and quantiles

they all involve computing expectation.

Monte Carlo integration: idea

Let 𝑋 be a RV with pdf given by 𝑝. For function 𝑔, we aim to compute

𝔼𝑋∼𝑝[𝑔(𝑋)] = ∫ 𝑔(𝑥)𝑝(𝑥)𝑑𝑥.

1. Sample 𝑥𝑖 ∼ 𝑝 for 𝑖 = 1, ..., 𝑁 .
2. Approximation: 𝐼 = ∫ 𝑔(𝑥)𝑝(𝑥)𝑑𝑥 ≈ 1

𝑁 ∑𝑖 𝑔(𝑥𝑖) = ̂𝐼 .

Why is this valid?

Monte Carlo integration: unbiased

It is easy to show that

𝔼[ ̂𝐼] = 𝐼.

But does it concentrate around 𝐼 as we increase 𝑁?
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Monte Carlo integration: WLLN

(Weak law of large numbers) If 𝑋𝑛 ∼ 𝑝 i.i.d. and 𝔼[𝑋𝑛] = 𝜇, then

1
𝑁 ∑

𝑖
𝑥𝑖 →𝑝 𝜇

as 𝑁 → ∞.

We can apply the LLN to 𝑔(𝑋𝑛) to show that it converges to 𝔼[𝑔(𝑋)].
Note: the assumptions are fairly weak, 𝔼[|𝑋|] < ∞ and that 𝑔 be integrable.

Monte Carlo integration: basic properties

• Unbiased: 𝔼[𝑁−1 ∑𝑖 𝑔(𝑋𝑖)] = 𝔼[𝑔(𝑋)].
• Consistency by LLN: we get closer to 𝔼[𝑔(𝑋)] as 𝑁 increases.
• Rate of convergence: √ 1

𝑁 var[𝑔(𝑋)] = 𝑂(1/
√

𝑁).

– Rough translation: to obtain 𝑘 decimal point accuracy, we need 𝑁 = 102𝑘.

Importance sampling: tail probability

Let 𝑋 ∼ 𝑁(0, 1). Estimate the tail probability:

𝑃(𝑋 > 𝑥0),

for some large 𝑥0.
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Importance sampling: tail probability plot

Compute 𝑃(𝑋 > 10)?

Importance sampling: motivation 1

import scipy
x0 = 10
y = scipy.stats.norm.pdf(x0, 0, 1)
print(y)
prob = 1 - scipy.stats.norm.cdf(x0, 0, 1)
print(prob)
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7.69459862670642e-23
0.0

• Density is non-zero but CDF returns zero.

Importance sampling: motivation 2

𝑃(𝑋 > 𝑥0) = 𝔼[1[𝑋 > 𝑥0]] (1)

= ∫ 1[𝑋 > 𝑥0]𝜙(𝑥)𝑑𝑥, (2)

where 𝜙(𝑥) denotes standard Normal PDF. Let’s use Monte Carlo sampling:

𝔼[1[𝑋 > 𝑥0]] ≈ 1
𝑁 ∑

𝑖
1[𝑥𝑖 > 𝑥0]. (3)

Importance sampling: MC estimate fails

Number of samples > 10: 0
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Importance sampling: idea

𝔼[𝑔(𝑋)] = ∫ 𝑔(𝑥)𝑓(𝑥)𝑑𝑥 (4)

= ∫ 𝑔(𝑥)𝑓(𝑥)
ℎ(𝑥)ℎ(𝑥)𝑑𝑥 (5)

= ∫ 𝑔(𝑥)𝑤(𝑥)ℎ(𝑥)𝑑𝑥. (6)

Rather than sampling from 𝑋𝑖 ∼ 𝑓 , we sample from more convenient distribution with density
function ℎ.

Condition: ℎ(𝑥) > 0 where 𝑓(𝑥) > 0
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Importance sampling: does it work?

x = np.random.normal(size=10000, loc=x0, scale=1)
weights = scipy.stats.norm.pdf(x, 0, 1) / scipy.stats.norm.pdf(x, x0, 1)
print(np.mean(weights * (x > x0)))

7.512162906570435e-24

How can we verify that this is correct?

true_val = scipy.stats.norm.sf(x0)
print(f"True value: {true_val}")

True value: 7.61985302416047e-24

Importance sampling: how to choose a proposal

• 𝑓(𝑥) > 0 ⇒ ℎ(𝑥) > 0.
• 𝔼𝑋∼ℎ[𝑔(𝑋)𝑓(𝑋)/ℎ(𝑋)] to be defined.
• Variance of the weights should be finite.

Importance sampling: variance of the weights

The variance of the importance estimator is finite only when

𝔼𝑋∼ℎ [𝑔2(𝑋)𝑓2(𝑥)
ℎ2(𝑥)] < ∞.

• We need the ratio 𝑓/ℎ to be bounded, so 𝑓(𝑥) < 𝑀ℎ(𝑥) for some 𝑀 > 0.
• More specifically, we want ℎ(𝑥) to match the shape of 𝑔(𝑥)𝑓(𝑥) reasonably well where

𝑔(𝑥)𝑓(𝑥) has high density.
• The optimal proposal ℎ is proportional to |𝑔(𝑥)𝑓(𝑥)|.
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Importance sampling: variance of the weights

Effective sample size:

ESS = (∑𝑛 𝑤𝑛)2

∑𝑛 𝑤2𝑛
.

• ESS roughly measures how many i.i.d. samples from the target we would effectively have
if we used direct sampling from 𝑓 .

• High variance in the weights means few samples dominate the approximation.

Optimization

𝜃∗ = argmin𝐿(𝜃).

• Continuous optimization: 𝜃 ∈ Θ ⊆ ℝ𝐷.
• We will assume that 𝐿 is “smooth”: continuously differentiable.

– If not smooth, there is a way around this problem by decomposing the function
over its domain (smooth part vs non-smooth part).

• Examples: mean squared error function or posterior distribution function involving
continuous-valued parameters.

Global optimization

• 𝜃∗ is a global minimum.
• Algorithm to solve the optimization problem is called a solver.
• Most problems and solvers do not guarantee global optima, except in special cases (e.g.,

convex problems).

Local optimization

𝜃∗ is a local minimum if

∃𝛿 > 0, ∀𝜃 ∈ Θ s.t. ‖𝜃 − 𝜃∗‖ < 𝛿 ⇒ 𝐿(𝜃∗) ≤ 𝐿(𝜃)

8



Local vs global optimization

Source: extreme_fig_1d.ipynb

Gradient and Hessian

Let 𝑔(𝜃) = ∇𝐿(𝜃) be the gradient vector of 𝐿.

Let 𝐻(𝜃) = ∇2𝐿(𝜃) denote the Hessian matrix.

Let 𝑔∗ = 𝑔(𝜃)∣
𝜃∗

and 𝐻∗ = 𝐻(𝜃)∣
𝜃∗

.

Necessary and sufficient conditions of local optima

If 𝜃∗ is a local optimum, then

• 𝑔∗ = 0 and
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• 𝐻∗ is positive semi-definite.

If 𝑔∗ = 0 and 𝐻∗ is positive definite, then 𝜃∗ is a local optimum.

Note: zero gradient alone is not sufficient, since we could have a saddle point.

PSD ensures 𝐿(𝜃∗) ≤ 𝐿(𝜃).

First-order method

Class of algorithms that utilize the gradient vector.

1. Initialize algorithm: set 𝜃 = 𝜃0.
2. At each iteration 𝑡: update 𝜃𝑡+1 = 𝜃𝑡 + 𝜂𝑡𝑑𝑡:

• 𝜂𝑡: learning rate or step size
• 𝑑𝑡 descent direction.

3. Repeat until stationary point is reached (i.e., gradient is zero).

The descent direction is given by 𝑑𝑡 = −𝑔𝑡. Recall: gradient points to the direction of maximal
increase.

Second-order method

Utilize gradient and Hessian to find the optima.

(Newton’s method) At each iteration 𝑡:

𝜃𝑡+1 = 𝜃𝑡 + 𝜂𝐻−1
𝑡 𝑔𝑡.

Because the Hessian encodes the local curvature of the function, multiplying the gradient by
𝐻−1 “preconditions” the search direction and counteracts the function’s curvature, yielding
more direct steps toward the optimum.

Stochastic optimization

The goal is to minimize an expected loss with respect to some random variable 𝑧:

𝐿(𝜃) = 𝔼𝑧∼𝑞[𝐿(𝜃, 𝑧)].

Example: Monte Carlo Expectation Maximization where the expectation is intractable.
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Stochastic gradient descent

We need the gradient of the expectation of the loss function:

𝑔𝑡 = ∇𝔼𝑧𝑡∼𝑞[𝐿(𝜃, 𝑧𝑡)].

Update:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡𝑔𝑡.

Stochastic gradient descent: finite sum

𝐿(𝜃𝑡) = 1
𝑁

𝑁
∑
𝑛=1

𝑙(𝑦𝑛, 𝑓𝜃(𝑥)).

• In fitting a large scale model with large data, evaluating the gradient of 𝐿(𝜃𝑡) can be
time consuming.

• Sample a minibatch 𝐵𝑡 of size 𝐵 ≪ 𝑁 :

𝑔𝑡 = 1
𝐵 ∑

𝑛∈𝐵𝑡

∇𝑙(𝑦𝑛, 𝑓𝜃(𝑥)).

Learning rate

To ensure convergence of stochastic gradient descent the learning rate schedule needs to satisfy
Robbins-Monro conditions:

𝜂𝑡 → 0,

and

∑ 𝜂2
𝑡

∑ 𝜂𝑡
→ 0,

or ∑ 𝜂𝑡 → ∞ and ∑ 𝜂2
𝑡 → 0.
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Learning rate

• Inverse decay 𝜂𝑡 = 𝜂0/(1 + 𝛼𝑡)
• Exponential decay 𝜂0 exp(−𝛼𝑡) for 𝜂0 > 0, 𝛼 > 0.

But these may not be practical choices for many problems.

Momentum

Take larger steps in directions of continued movements; slow down when the gradients change
abruptly.

𝑚𝑡 = 𝛽𝑚𝑡−1 + 𝑔𝑡−1 (7)
𝜃𝑡 = 𝜃𝑡−1 + 𝜂𝑡𝑚𝑡, (8)

0 < 𝛽 < 1, typically 𝛽 ≈ 0.9.

SGD algorithms

• AdaGrad
• RMSProp
• Adam

None of these methods satisfy Robbins-Monro and therefore, are not guaranteed to converge.
However, they work well in practice.

Combining ideas from optimization for sampling

• Monte Carlo Expectation Maximization:

– Intractable E-step is replaced by Monte Carlo E-step,
– Maximize model parameters 𝜃 in the M-step.

• Variational inference:

– draw samples from a variational distribution 𝑞𝜓, optimize 𝜓 to be close to the
posterior 𝑝.

• Non-reversible MCMC:

– Hamiltonian Monte Carlo and Bouncy Particle Sampler: uses gradients to explore
the sample space.
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