
Probabilistic graphical models

Quote

“Intelligence is not just about pattern recognition and function approximation. It’s about
modeling the world”. — Josh Tenenbaum, NeurIPS 2021.

Graph

Graph is denoted 𝐺 = (𝑉 , 𝐸).

• 𝑉 : set of nodes.
• 𝐸: set of edges describing relationship between nodes. Edges can be directed or undi-

rected.
• Directed graph: all of the edges are directed, denoted (𝑢, 𝑣) = 𝑢 → 𝑣 for 𝑢, 𝑣 ∈ 𝑉 . Each

edge is an ordered pair, meaning (𝑢, 𝑣) ≠ (𝑣, 𝑢).
• Undirected graph: all of the edges are undirected, denoted {𝑢, 𝑣} for 𝑢, 𝑣 ∈ 𝑉 . An edge

is represented as an unordered pair of vertices, i.e., {𝑢, 𝑣} = {𝑣, 𝑢}.

Graph

A path is a sequence of nodes where each pair of consecutive nodes are connected by an
edge.

A simple path does not revisit nodes, whereas a general path may.

Directed graphs

• Parents are defined as 𝑝𝑎(𝑣) = {𝑢 ∶ 𝑢 → 𝑣 ∈ 𝐸}.
• Children: 𝑐ℎ(𝑣) = {𝑢 ∶ 𝑣 → 𝑢 ∈ 𝐸}.
• These concepts can be extended to define ancestors and descendants:
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𝑎𝑛𝑐(𝑣) = {𝑢 ∶ ∃ a path from 𝑢 to v} (1)
𝑑𝑒𝑐(𝑣) = {𝑢 ∶ ∃ a path from 𝑣 to u}. (2)

Ancestors and descendants include indirect relationships established through one or more
directed edges.

Directed acyclic graph (DAG)

A cycle is a path where the starting and ending nodes are the same, and no intermediate nodes
are repeated.

DAG is a directed graph with no cycle.

• Topological ordering: DAG can be ordered such that parents come before children.

Directed graphical models

A Directed Graphical Model (DGM) is a DAG in which

• Each node 𝑣 ∈ 𝑉 represents a random variable 𝑋𝑣.
• DGM encodes ordered Markov property:

𝑋𝑣⊥𝑋𝑢|𝑋𝑝𝑎(𝑣) for 𝑢 ∈ 𝑎𝑛𝑐(𝑣) � 𝑝𝑎(𝑣)

This reduces the complexity of the model (e.g., number of parameters) by leveraging condi-
tional independence.

Directed graphical models

• To specify a DGM, it suffices to specify conditional probabiliy distributions (CPD)
𝑃(𝑋𝑣|𝑋𝑝𝑎(𝑣));

• The joint distribution factorizes as:

𝑃(𝑋) = ∏
𝑣

𝑃(𝑋𝑣|𝑋𝑝𝑎(𝑣)); 𝑣 ∈ 𝑉

This factorization reflects the dependency structure encoded in the graph, allowing for efficient
representation and inference of the joint distribution.
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Example: Markov chains

Time series data where the observation at time 𝑡 depends on the past observations 1, ..., 𝑡−1.

𝑃(𝑋1∶𝑇 ) = 𝑃(𝑋1)
𝑇

∏
𝑡=2

(𝑋𝑡|𝑋1∶𝑡−1)

First order Markov chain:

𝑃(𝑋1∶𝑇 ) = 𝑃(𝑋1)
𝑇

∏
𝑡=2

(𝑋𝑡|𝑋𝑡−1)

Example: Hidden Markov model

First-order Markov chain on the latent state.
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Example: Hidden Markov model

Second-order Markov chain on the latent state.

Example: The “student” network

• D: Difficulty of class (easy, hard)
• I: Intelligence (low, high)
• G: Grade (A, B, C)
• S: SAT score (bad, good)
• L: Letter of recommendation (bad, good)

Exercise: construct a DGM on these variables. Think about which variables are the “causes”
and which are the “outcomes.”
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Example: The “student” network

Difficult of class and Intelligence affects your Grade. Intelligence affects SAT score. Letter is
determined by Grade.
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Example: The “student” network

𝑝(𝐷, 𝐼, 𝐺, 𝑆, 𝐿) = 𝑝(𝐼)𝑝(𝐷)𝑝(𝐺|𝐷, 𝐼)𝑝(𝑆|𝐼)𝑝(𝐿|𝐺)

Conditional independence properties of DGMs

Let 𝐺 = (𝑉 , 𝐸) be a DAG and 𝐴, 𝐵, 𝐶 ⊂ 𝑉 . We want to determine if 𝐴⊥𝐺𝐵|𝐶.

Bayes ball algorithm.

• Shade all nodes in 𝐶 as if though they are observed.
• Place a “ball” at each node in 𝐴.
• Let the balls bounce around according to the following rules and if any of the balls reach

a node in 𝐵, the statement is not true.
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Bayes ball algorithm 1

Chain (pipe): 𝑋 → 𝑌 → 𝑍. Suppose we observe 𝑌 : 𝑌 ∈ 𝐶. Then, is 𝑋⊥𝑍|𝑌 ?

𝑝(𝑥, 𝑧|𝑦) = 𝑝(𝑥, 𝑦, 𝑧)
𝑝(𝑦) (3)

= 𝑝(𝑥)𝑝(𝑦|𝑥)𝑝(𝑧|𝑦)
𝑝(𝑦) (4)

= 𝑝(𝑥, 𝑦)
𝑝(𝑦) 𝑝(𝑧|𝑦) (5)

= 𝑝(𝑥|𝑦)𝑝(𝑧|𝑦). (6)

Therefore, if 𝑌 ∈ 𝐶, the ball cannot bounce from 𝑋 to 𝑍.
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Bayes ball algorithm 1

Consider a path 𝐷 → 𝐺 → 𝐿 or 𝐼 → 𝐺 → 𝐿. The letter depends on the grade and if it is
observed, the values of 𝐼 and 𝐷 are irrelevant (good grade will result in a good letter).

Bayes ball algorithm 2

Tent (fork): 𝑋 ← 𝑌 → 𝑍. Suppose we 𝑌 is observed. Then, is 𝑋⊥𝑍|𝑌 ?

𝑝(𝑥, 𝑧|𝑦) = 𝑝(𝑦)𝑝(𝑥|𝑦)𝑝(𝑧|𝑦)
𝑝(𝑦) (7)

= 𝑝(𝑥|𝑦)𝑝(𝑧|𝑦). (8)
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So, YES! If we observe the root node, it separates the children and the ball cannot bounce
from 𝑋 to 𝑍.

Bayes ball algorithm 2

The values taken by SAT score and Grade are independent given that we observe intelligence.

Bayes ball algorithm 3: Berkson’s paradox

Collider (v-structure): 𝑋 → 𝑌 ← 𝑍. Suppose we 𝑌 is observed. Then, is 𝑋⊥𝑍|𝑌 ?
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𝑝(𝑥, 𝑧|𝑦) = 𝑝(𝑥)𝑝(𝑧)𝑝(𝑦|𝑥, 𝑧)
𝑝(𝑦) (9)

= 𝑝(𝑥, 𝑧)𝑝(𝑦|𝑥, 𝑧)
𝑝(𝑦) (10)

If 𝑌 is observed, the ball can bounce from 𝑋 to 𝑍 (and vice versa) via 𝑌 .

Bayes ball algorithm 3: Berkson’s paradox

Note that marginally, 𝑋⊥𝑍!! because 𝑝(𝑥, 𝑧) = 𝑝(𝑥)𝑝(𝑧).
Therefore, ball cannot bounce from 𝑋 to 𝑍 if 𝑌 is unobserved.

This is referred to as explaining away or Berkson’ paradox, where the observed value can be
due to either of the parent nodes.
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Bayes ball algorithm 3: Berkson’s paradox

Consider 𝐼 → 𝐺 ← 𝐷. Clearly intelligence of the student and difficulty of the class are
unrelated (marginally independent). But if we observe 𝐺 = 𝐴, then is it because the student
is intelligent or because the course is easy? It can be explained away by either.

Bayes ball algorithm 3: Berkson’s paradox

This conditional dependence arises because 𝑌 introduces a dependency between 𝑋 and 𝑍, even
though they are marginally independent. This is a key property of colliders in DGMs.

For example, let 𝐺 = 𝐴. Then, if 𝐼 is known, then it will change our belief on 𝐷 and vice
versa. If 𝐷 = ℎ𝑎𝑟𝑑 along with 𝐺 = 𝐴, then we will update our belief so that 𝑃(𝐼 = ℎ𝑖𝑔ℎ) is
high.
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Bayes ball algorithm 4: boundary conditions

Can ball bounce from 𝐼 to 𝐷 and vice versa? Is 𝐼⊥𝐷|𝐿?

Bayes ball algorithm 4: boundary conditions

Essentially, observing 𝐿 unblocks 𝐺 as a collider so that ball can bounce from 𝐼 to 𝐷.
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