
On-line inference for hidden Markov models via
particle filters



Well-log data

Figure 1: The problem of detecting break points in well-log data



Problem description

▶ Measurements of the nuclear magnetic response of
underground rocks.

▶ The underlying signal is piecewise constant, each constant
segment relating to a stratum of a single type of rock. The
jump discontinuities in the signal occur each time that a new
rock stratum is met.

▶ In drilling for oil, it is important to predict changes in rock
type to prevent blow-outs.

▶ They can be avoided by adjusting the pressure in the borehole
each time that a new type of rock is met.

▶ To detect changes in rock strata as drilling proceeds, data
need to be collected from around the drill head.
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HMM

Three component HMM.
▶ 𝐼𝑡: hidden state variable.
▶ 𝑋𝑡: measurable state(?)
▶ 𝑌𝑡: measurements.



Hidden states

𝐼𝑡 ∈ {1, ..., 𝑅}: follow a Markov chain:

𝑃(𝐼𝑡 = 𝑙|𝐼𝑡−1 = 𝑖) = 𝑃𝑖𝑙.



Measurement process

𝑋𝑡 = 𝑓𝑖(𝑋𝑡−1, 𝑉𝑡)

𝑌𝑡 = 𝑔𝑖(𝑋𝑡, 𝑊𝑡)

𝑉𝑡, 𝑊𝑡 represent random noise.



HMM for well-log data

▶ 𝐼𝑡 = (𝑆𝑡, 𝑂𝑡), 𝑆𝑡, 𝑂𝑡 ∈ {1, 2}.

4 possible states:
▶ 𝐼𝑡 = (1, 1)
▶ 𝐼𝑡 = (1, 2)
▶ 𝐼𝑡 = (2, 1)
▶ 𝐼𝑡 = (2, 2)



HMM for well-log data

▶ 𝑋𝑡 = 𝑋𝑡−1 if 𝑆𝑡 = 1. Models piece-wise const function.
▶ 𝑋𝑡 = 𝜇 + 𝜎𝑉𝑡 if 𝑆𝑡 = 2.

The model for 𝑋𝑡 allows for jumps centered around 𝜇.



HMM for well-log data

▶ 𝑌𝑡 = 𝑋𝑡 + 𝜏1𝑊𝑡 if 𝑂𝑡 = 1
▶ 𝑌𝑡 = 𝜈 + 𝜏2𝑊𝑡 if 𝑂𝑡 = 2.

𝑉𝑡, 𝑊𝑡 are uncorrelated, standard Gaussian RVs.

The model for 𝑌𝑡 allows for clusters of outliers around 𝜈.



Particle filters for discrete space

Since 𝐼𝑡 takes on a fininte support (𝑅 = 4 possible values), for
each of the 𝑁 particles, we can enumerate 𝑅𝑁 new particles
rather than taking a random sample.

The standard SMC performs multinomial resampling to prune the
population down to 𝑁 ; but this is redundant: there is no reason to
keep multiple copies of the same particle.

If we are limited by budget of 𝑁 particles, how can we prune the
population from 𝑅𝑁 down to 𝑁?
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Particle filters for well-log data

Particle 𝛽𝑡 = {𝛼𝑡, 𝛾2
𝑡 , 𝑖𝑡, 𝜏𝑡}:

▶ 𝛼𝑡, 𝛾2
𝑡 : mean and variance of the posterior distribution over

𝑋𝑡.
▶ 𝑖𝑡: the hidden states.
▶ 𝜏𝑡: the time of last change point in 𝑋𝑡.



Particle filters for well-log data

At iteration 𝑡 of SMC:
▶ We have 𝑁 particle-weight pairs {(𝛽𝑡−1,𝑗, 𝑞𝑡−1,𝑗)}.

▶ Enumerate over all 𝑅 possible states for 𝑗 = 1, ..., 𝑁 . This
yields 𝑅𝑁 particles at time 𝑡: {𝛽𝑡,𝑗,𝑘}, 𝑘 = 1, ..., 𝑅.

▶ Calculate new weights 𝑞𝑡,𝑗,𝑘 = 𝑞𝑡−1,𝑗𝑃𝑖𝑙𝐿(𝑦𝑡|𝛽𝑡,𝑗,𝑘).
▶ Resample from a population of 𝑅𝑁 particles down to 𝑁

particles to get (𝛽𝑡,𝑗, 𝑞𝑡,𝑗) 𝑗 = 1, ..., 𝑁 .

What is the optimal way to select 𝑁 out of 𝑅𝑁 particles?
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Optimal resampling

▶ We have 𝑞 = {𝑞𝑗}𝑀
𝑗=1: discrete probability mass function

(𝑀 = 𝑅𝑁).
▶ We want to find 𝑄 = {𝑄𝑗}𝑀

𝑗=1, a stochastic approximation of
𝑞 such that

1. 𝔼(𝑄𝑗) = 𝑞𝑗.
2. the support of 𝑄 has no more than 𝑁 < 𝑀 points.
3. 𝔼[∑𝑗(𝑄𝑗 − 𝑞𝑗)2] is minimized.



Theorem 1



Proof of Theorem 1



Proof of Theorem 1: Objective function

Our goal is to minimize

𝔼 [
𝑀

∑
𝑗=1

(𝑄𝑗 − 𝑞𝑗)2]

such that
▶ 𝔼[𝑄𝑗] = 𝑞𝑗
▶ At most 𝑁 of 𝑄𝑗 are non-zero (selected).



Proof of Theorem 1: Define 𝑄𝑗

At most 𝑁 of 𝑄𝑗 are non-zero, so that means we need to select 𝑁
of them with some probability.

𝑄𝑗 = { 𝐶𝑗 with probability 𝑝𝑗
0 otherwise,

for some random variable 𝐶𝑗 to be determined.



Proof of Theorem 1: Define 𝑄𝑗
We have the condition that at most 𝑁 𝑄𝑗’s are not 0:

𝑀
∑

𝑗
1[𝑄𝑗 ≠ 0] ≤ 𝑁.

Now, the expectation of the indicator variable 1[𝑄𝑗 ≠ 0] is:

𝔼[1[𝑄𝑗 ≠ 0]] = 𝑝𝑗.

Sum over 𝑗 = 1, ..., 𝑀 , yields the expected number of particles
selected:

𝔼[
𝑀

∑
𝑗=1

1[𝑄𝑗 ≠ 0]] =
𝑀

∑
𝑗=1

𝑝𝑗 ≤ 𝑁.



Proof of Theorem 1: why 𝐶𝑗 should be deterministic

By tower property,

𝔼[(𝑄𝑗 − 𝑞𝑗)2] = 𝑝𝑗𝔼[(𝐶𝑗 − 𝑞𝑗)2] + (1 − 𝑝𝑗)(0 − 𝑞𝑗)2.

Let 𝐶𝑗 = 𝜇𝑗 + 𝜖𝑗, with 𝜖𝑗 is random variance with mean 0 and
some variance 𝜎2.

Then, bias-variance decomposition yields:

𝔼[(𝐶𝑗 − 𝑞𝑗)2] = (𝔼[𝐶𝑗] − 𝑞𝑗)2 + 𝔼(𝜖2
𝑗).

The expected squared loss can only be increased by variance of 𝐶𝑗.

Note: 𝑣𝑎𝑟(𝐶𝑗) = 𝑣𝑎𝑟(𝜖2
𝑗) = 𝔼(𝜖2

𝑗).



Proof of Theorem 1: why 𝐶𝑗 should be deterministic

Let’s suppose 𝐶𝑗 is deterministic. Then,

𝔼[(𝑄𝑗 − 𝑞𝑗)2] = 𝑝𝑗(𝐶𝑗 − 𝑞𝑗)2 + (1 − 𝑝𝑗)𝑞2
𝑗 .

If 𝐶𝑗 is not deterministic,

So,

𝔼[(𝑄𝑗 − 𝑞𝑗)2] = 𝑝𝑗((𝜇𝑗 − 𝑞𝑗)2 + 𝑣𝑎𝑟(𝜖𝑗)) + (1 − 𝑝𝑗)𝑞2
𝑗 .

So the sqaured error is minimized by assuming 𝐶𝑗 is
deterministic.



Proof of Theorem 1: unbiasedness yields 𝐶𝑗

We want unbiasedness: 𝔼[𝑄𝑗] = 𝑝𝑗𝐶𝑗 = 𝑞𝑗.

This implies that 𝐶𝑗 = 𝑞𝑗/𝑝𝑗.

So we got our 𝐶𝑗.



Proof of Theorem 1: objective function

Plug 𝐶𝑗 back in the squared error:

𝔼[(𝑄𝑗 − 𝑞𝑗)2] = 𝑝𝑗(𝑞𝑗/𝑝𝑗 − 𝑞𝑗)2 + (1 − 𝑝𝑗)𝑞2
𝑗 (1)

= 𝑞2
𝑗 /𝑝𝑗 − 𝑞2

𝑗 . (2)



Proof of Theorem 1: objective function

Finally, our objective function is given by:

𝑀
∑
𝑗=1

𝔼[(𝑄𝑗 − 𝑞𝑗)2] =
𝑀

∑
𝑗=1

(𝑞2
𝑗 /𝑝𝑗 − 𝑞2

𝑗 ). (3)

Since 𝑞2
𝑗 is fixed, we need to optimize 𝑝𝑗 with constraints:

▶ 0 ≤ 𝑝𝑗 ≤ 1,
▶ ∑𝑀

𝑗=1 𝑝𝑗 ≤ 𝑁 .



Proof of Theorem 1: “water-filling” argument

We want:

argmin𝑝1,...,𝑝𝑀

𝑀
∑
𝑗=1

𝑞2
𝑗 /𝑝𝑗. (4)

Since 𝑝𝑗 ≤ 1, for 𝑞𝑗 large, we want to keep the term 𝑞2
𝑗 /𝑝𝑗 = 𝑞2

𝑗 ,
i.e., 𝑝𝑗 = 1.

But of course, the condition that at most 𝑁 𝑄𝑗 is non-zero stops
us from setting all 𝑝𝑗 = 1.

We prioritize the ones with large 𝑞𝑗 (weights).



Proof of Theorem 1: “water-filling” argument

The number of particles who will be selected with probability
𝑝𝑗 = 1 is determined by solving for 𝑐 > 0:

𝑀
∑
𝑗=1

min(𝑐𝑞𝑗, 1) ≤ 𝑁.

▶ Those particles whose weights are such that 𝑐𝑞𝑗 ≥ 1, get
𝑝𝑗 = 1 (selected).

▶ Otherwise, 𝑝𝑗 = 𝑐𝑞𝑗 < 1 and they have chance to be selected
according to 𝑝𝑗.



Proof of Theorem 1: check unbiasedness

For particles whose 𝑝𝑗 = 1, 𝔼[𝑄𝑗] = 𝔼[𝑞𝑗/𝑝𝑗] = 𝑞𝑗.

For particles whose 𝑝𝑗 < 1, 𝔼[𝑄𝑗] = 𝑝𝑗𝐶𝑗 + (1 − 𝑝𝑗)0 = 𝑞𝑗 since
𝐶𝑗 = 𝑞𝑗/𝑝𝑗.



Algorithm

1. Normalize the weights 𝑞∗
𝑡,𝑗 = 𝑞𝑡,𝑗/ ∑𝑀

𝑗=1 𝑞𝑡,𝑗. Solve for 𝑐 > 0:
𝑁 = ∑𝑗 min(𝑐𝑞∗

𝑡,𝑗, 1).

2. If 𝑞∗
𝑡,𝑗 ≥ 1/𝑐, then place particle 𝑗 in set 1 (selected).

Otherwise, place particle in set 2. Let 𝐿 be the size of set 1.

3. Use stratified sampling to resample 𝑁 − 𝐿 particles from set
2, proportional to the weight 𝑞∗

𝑡,𝑗.

4. The 𝐿 particles in set 1 maintain its weight 𝑞∗
𝑡,𝑗. The

remaining 𝑁 − 𝐿 particles receive weight 1/𝑐.



Algorithm

1. Normalize the weights 𝑞∗
𝑡,𝑗 = 𝑞𝑡,𝑗/ ∑𝑀

𝑗=1 𝑞𝑡,𝑗. Solve for 𝑐 > 0:
𝑁 = ∑𝑗 min(𝑐𝑞∗

𝑡,𝑗, 1).
2. If 𝑞∗

𝑡,𝑗 ≥ 1/𝑐, then place particle 𝑗 in set 1 (selected).
Otherwise, place particle in set 2. Let 𝐿 be the size of set 1.

3. Use stratified sampling to resample 𝑁 − 𝐿 particles from set
2, proportional to the weight 𝑞∗

𝑡,𝑗.

4. The 𝐿 particles in set 1 maintain its weight 𝑞∗
𝑡,𝑗. The

remaining 𝑁 − 𝐿 particles receive weight 1/𝑐.



Algorithm

1. Normalize the weights 𝑞∗
𝑡,𝑗 = 𝑞𝑡,𝑗/ ∑𝑀

𝑗=1 𝑞𝑡,𝑗. Solve for 𝑐 > 0:
𝑁 = ∑𝑗 min(𝑐𝑞∗

𝑡,𝑗, 1).
2. If 𝑞∗

𝑡,𝑗 ≥ 1/𝑐, then place particle 𝑗 in set 1 (selected).
Otherwise, place particle in set 2. Let 𝐿 be the size of set 1.

3. Use stratified sampling to resample 𝑁 − 𝐿 particles from set
2, proportional to the weight 𝑞∗

𝑡,𝑗.

4. The 𝐿 particles in set 1 maintain its weight 𝑞∗
𝑡,𝑗. The

remaining 𝑁 − 𝐿 particles receive weight 1/𝑐.



Algorithm

1. Normalize the weights 𝑞∗
𝑡,𝑗 = 𝑞𝑡,𝑗/ ∑𝑀

𝑗=1 𝑞𝑡,𝑗. Solve for 𝑐 > 0:
𝑁 = ∑𝑗 min(𝑐𝑞∗

𝑡,𝑗, 1).
2. If 𝑞∗

𝑡,𝑗 ≥ 1/𝑐, then place particle 𝑗 in set 1 (selected).
Otherwise, place particle in set 2. Let 𝐿 be the size of set 1.

3. Use stratified sampling to resample 𝑁 − 𝐿 particles from set
2, proportional to the weight 𝑞∗

𝑡,𝑗.

4. The 𝐿 particles in set 1 maintain its weight 𝑞∗
𝑡,𝑗. The

remaining 𝑁 − 𝐿 particles receive weight 1/𝑐.



Results

▶ See Figure 2.
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