On-line inference for hidden Markov models via
particle filters



Well-log data

Nuclear Response

140000

120000

100000

80000
|

T T T T T
0 1000 2000 3000 4000

Time

Figure 1: The problem of detecting break points in well-log data
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Problem description

P Measurements of the nuclear magnetic response of
underground rocks.

P The underlying signal is piecewise constant, each constant
segment relating to a stratum of a single type of rock. The
jump discontinuities in the signal occur each time that a new
rock stratum is met.

P In drilling for oil, it is important to predict changes in rock
type to prevent blow-outs.

P They can be avoided by adjusting the pressure in the borehole
each time that a new type of rock is met.

P> To detect changes in rock strata as drilling proceeds, data
need to be collected from around the drill head.



HMM

Three component HMM.

P I,: hidden state variable.
P X,: measurable state(?)
P Y,: measurements.



Hidden states

I, € {1, ..., R}: follow a Markov chain:

P(It = ”Itfl = Z) = Pil'



Measurement process

Y, :gi<Xt>Wt>

Vi, W, represent random noise.



HMM for well-log data

» I, =(5,.0,), 5,0, €{1,2}.

4 possible states:

» I, =(1,1)
> I, =(1,2)
> I, =(2,1)
> I, =(2,2)



HMM for well-log data

P X, =X, ,if S, =1. Models piece-wise const function.
> X, =ptoV,ifS, =2

The model for X, allows for jumps centered around p.



HMM for well-log data

Y, =X,+7,W,ifO, =1
V,, W, are uncorrelated, standard Gaussian RVs.

The model for Y, allows for clusters of outliers around v.
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Particle filters for discrete space

Since I, takes on a fininte support (R = 4 possible values), for
each of the N particles, we can enumerate RN new particles
rather than taking a random sample.

The standard SMC performs multinomial resampling to prune the
population down to N; but this is redundant: there is no reason to
keep multiple copies of the same particle.

If we are limited by budget of NV particles, how can we prune the
population from RN down to N7



Particle filters for well-log data

Particle 8, = {a;, V2,4, 7, }:
P «,,72: mean and variance of the posterior distribution over
X;.
P i,: the hidden states.
P 7,: the time of last change point in X,.
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Particle filters for well-log data

At iteration ¢t of SMC:
» We have N particle-weight pairs {(5; 1 ;,¢; 1)}

P Enumerate over all R possible states for j = 1,..., N. This
yields RN particles at time t: {3, ;. },k=1,..., R.

P Calculate new weights q; ; . = q;_1 ;P L(y|5; ; 1)-

P Resample from a population of RN particles down to NV
particles to get (ﬂm,qt,j) j=1,...,N.

What is the optimal way to select N out of RN particles?



Optimal resampling

P We have g = {q]} 1. discrete probability mass function
(M = RN).

P We want to find Q = {Qj}j]\il a stochastic approximation of
q such that

L E(Qj) = q;-
2. the support of ) has no more than N < M points.
3. [E[Zj(Qj — qj)Q] is minimized.



Theorem 1

Theorem 1. Let N < M and let ¢ be the unique root of E?”: 1 min(cgj, 1) = N. If an approxi-
mation Q can be found, satisfying the conditions

(@ EQ)=gq,j=1,...,M,and
(b) the support of Q has no more than N points, with marginal distributions given by

q;/pj, with probability p;,
Qj=10o, otherwise, 3
where p; = min(cq;, 1), for j = 1,..., M, then Q minimizes the expected squared error

loss, E Zy: 1 (Q; — g;)%, under the conditions stated.



Proof of Theorem 1

Appendix A: Proof of theorem 1

The condition that, with probability 1, at most N of the Q ;s are non-zero implies that marginally Q jisequal
to some random variable C; with probability p; and is 0 otherwise. Further, it implies that X/, p; <N,
and since

E{(Q; - 4))’} = PAE(C) — q;}* + p; var(C)) + (1 = p))q;
the expected squared error loss is minimized by the choice C; = c;, a constant, for each j. Further, the

unbiasedness condition E(Q;) = ¢, implies that ¢; = q;/p;.
‘With this choice of Q, we have

M
{Z(Qlqu } qu'(l/Pifl)‘

Minimizing this is equivalent to minimizing g %/pj, subject to ¥ JL1pj <N. This is achieved by
expression (3).



Proof of Theorem 1: Objective function

Our goal is to minimize

E [Z(QJ - %)2]

=1
such that

> [E[Qj] =g
P At most N of @, are non-zero (selected).



Proof of Theorem 1: Define Q;

At most N of Qj are non-zero, so that means we need to select N
of them with some probability.

Q. = C;  with probability p;
771 0 otherwise,

for some random variable Cj to be determined.



Proof of Theorem 1: Define Q;

We have the condition that at most NV Qj's are not 0:
M
S50, 401 <
J
Now, the expectation of the indicator variable 1[Q; # 0] is:

E[1[Q; # 0] = p;.

Sum over j = 1,..., M, yields the expected number of particles
selected:



Proof of Theorem 1: why Cj should be deterministic

By tower property,
E[(Q; — q;)%] = p,E[(C; — ;)] + (1 —p;)(0 — ¢;)*.

Let C; = u; + €;, with €, is random variance with mean 0 and

some variance 2.

Then, bias-variance decomposition yields:

E[(C; —4;)%] = (E[C}] — ¢;)* + E(&)).
The expected squared loss can only be increased by variance of C.

Note: var(C;) = var(e3) = E(€3).



Proof of Theorem 1: why Cj should be deterministic

Let's suppose C; is deterministic. Then,

[EKQJ' - Qj)Q] = pj(Cj - Qj)2 +(1— pj)QJQ'-
If Cj is not deterministic,

So,

E[(Q; — 4;)*] = p;((1; — 4;)* + var(e;)) + (1 = p;)q;.

So the sqaured error is minimized by assuming C; is
deterministic.



Proof of Theorem 1: unbiasedness yields Cj

We want unbiasedness: [E[Qj] = ijj =q;.
This implies that C; = ¢;/p;.

So we got our (.



Proof of Theorem 1: objective function

Plug C; back in the squared error:

E[(Qj - %)2] = pj(Qj/pj - Qj)z +(1 _pj)qu
=4;/p;— G-



Proof of Theorem 1: objective function

Finally, our objective function is given by:

Z E[(Q;— Z a;/p; — q3)- (3)

Since qj2. is fixed, we need to optimize p; with constraints:
» 0 < p; <1,
M
> > . p <N



Proof of Theorem 1: “water-filling” argument

We want:

M
argmin quz/pj. (4)
=1

Since p; <1, for q; large, we want to keep the term q?/pj = q?,
ie., pj = 1.

But of course, the condition that at most N Qj is non-zero stops
us from setting all p; = 1.

We prioritize the ones with large g; (weights).



Proof of Theorem 1: “water-filling” argument

The number of particles who will be selected with probability
p; = 1 is determined by solving for ¢ > 0:

M
Z min(cg;, 1) < N.
=1

P Those particles whose weights are such that cq; > 1, get
p; = 1 (selected).

P Otherwise, pj = ¢g; < 1 and they have chance to be selected
according to p,.



Proof of Theorem 1: check unbiasedness

For particles whose p; = 1, E[Q;] = E[q;/p,] = q;-

For particles whose p; < 1, E[Q;] = p,C; + (1 —p;)0 = g, since

Cj = q]’/pj-

J



Algorithm

M

=1 Q5 Solve for ¢ > 0:

1. Normalize the weights q; ; = ¢, ;/ >
N = Zj min(cg; ;, 1).
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Algorithm

1. Normalize the weights q; ; = ¢, ;/ Z;\il q; ;- Solve for ¢ > 0:

N = Zj min(cg; ;, 1).

2. If g; ; > 1/c, then place particle j in set 1 (selected).
Otherwise, place particle in set 2. Let L be the size of set 1.

3. Use stratified sampling to resample N — L particles from set
2, proportional to the weight q;j.

4. The L particles in set 1 maintain its weight ¢; ;. The
remaining N — L particles receive weight 1/c.



Results

P See Figure 2.



Results

Table 1. Comparison of performance of three particle
filter algorithms (see the text for details) at analysing the
well-log datat

Algorithm Absolute error  Square error
New particle filter 3.66 0.49
Mixture Kalman filter 73.6 19.0

Basic particle filter 143 88.7




Results

Table2. Comparison of performance of three particle filter algorithms
(see the text for details) at analysing the well-log datat

Algorithm False positive results ~ Missed changepoints
New particle filter 0 0
Mixture Kalman filter 4.5 1.1

Basic particle filter 25.5 0.03




