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Bayesian posterior sampling

Goal: sample from

𝑝(𝑥|𝑦) = 𝑝(𝑥, 𝑦)
𝑝(𝑦)

.

𝑥 ∈ 𝒳: parameters or latent variables.
𝑦 ∈ 𝒴: observations.
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MCMC

Metropolis-Hastings: need to choose a proposal distribution 𝑞.
We are “taught” to choose a local proposal:

▶ Gaussian random walk ensures the state space is recurrent,
▶ Acceptance probability should not be too high but not too low.

Choosing the right proposal distribution requires experience +
trial-error.
The exception is Gibbs sampling, where the proposal is given by the
conditional distribution. But Gibbs is not always possible.
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Disadvantages of random walk

Random walk can be inefficient in high dimension – can result in large
number of rejections and waste of computation.
Random walk can get stuck on a mode especially if the local proposal
is too small and we may never sufficiently explore the posterior.
High correlation between the samples.
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Disadvantages of random walk

The number of iterations needed to reach a state almost independent of
the current state is mostly determined by how long it takes to explore the
less constrained direction, which for this example has standard deviation
1.41 — about ten times greater than the standard deviation in the most
constrained direction. We might therefore expect that we would need
around ten iterations of random-walk Metropolis in which the proposal was
accepted to move to a nearly independent state. But the number needed
is actually roughly the square of this — around 100 iterations with
accepted proposals — because the random-walk Metropolis proposals have
no tendency to move consistently in the same direction.
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Gradient of posterior

Gradient of the posterior points in the direction of steepest ascent.
Gradient based optimization can find the maximum aposteriori (MAP)
estimate.

In drawing samples from the posterior distribution, we expect more
samples from regions with high posterior mass and less samples from
regions with small posterior mass.

Rather than using a random proposal, can we explore the posterior
space by utilizing the gradient and trace the surface of the posterior?
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Hamiltonian dynamics

Imagine a frictionless puck sliding along a surface defined by the posterior
distribution.

𝑥𝑖: the position of the ball in dimension 𝑖 = 1, ..., 𝐷
𝑚𝑖: the momentum along dimension 𝑖.

The puck moves at a constant velocity and when it encounters a slope, its
momentum allows it to continue, with the kinetic energy decreasing as
potential energy builds up.

At some point, kinetic energy reaches zero, at which point the puck slides
back down with kinetic energy increasing again and the potential energy
decreasing.
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Hamiltonian dynamics

The Hamiltonian system is described by a function 𝐻(𝑥, 𝑚) and the
change in (𝑥, 𝑚) over time 𝑡 is described by a set of differential equations:

𝑑𝑥𝑖
𝑑𝑡 = 𝜕𝐻

𝑑𝑚𝑖
(1)

𝑑𝑚𝑖
𝑑𝑡 = −𝜕𝐻

𝑑𝑥𝑖
. (2)

The change in position along dimension 𝑖 is given by derivative of 𝐻
wrt momentum along 𝑖.
The change in momentum is given by the negative of the derivative of
𝐻 wrt position (inverse to change in position).
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Hamiltonian dynamics

Let 𝐻(𝑥, 𝑚) = 𝑈(𝑥) + 𝐾(𝑚), where

Potential energy: 𝑈(𝑥),
Kinectic energy: 𝐾(𝑚).

𝑑𝑥𝑖
𝑑𝑡 = 𝜕𝐻

𝑑𝑚𝑖
= 𝜕𝐾(𝑚)

𝑑𝑚𝑖
(3)

𝑑𝑚𝑖
𝑑𝑡 = −𝜕𝐻

𝑑𝑥𝑖
= −𝜕𝑈(𝑥)

𝑑𝑥𝑖
(4)
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Hamiltonian Monte Carlo

How can we utilize Hamiltonian dynamics to draw samples from the
posterior?

𝑈(𝑥) = − log 𝑝(𝑥|𝑦) = − log 𝑝(𝑥, 𝑦) + log 𝑝(𝑦).
𝐾(𝑚) = 1

2𝑚𝑇 Σ−1𝑚.

Let 𝜙 denote zero mean Guassian, then

𝐾(𝑚) = 1
2𝑚𝑇 Σ−1𝑚 ∝ − log 𝜙(𝑚) = − log exp (−𝑚𝑇 Σ−1𝑚

2 ) + 𝐶.
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Hamiltonian Monte Carlo

𝐻(𝑥, 𝑚) = 𝑈(𝑥) + 𝐾(𝑚).

𝑑𝑥𝑖
𝑑𝑡 = 𝜕𝐻

𝑑𝑚𝑖
(5)

= [Σ−1𝑚]𝑖 (6)

If Σ = 𝐼 , then the change in position along 𝑖-th coordinate is given by the
momentum 𝑚𝑖.
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Hamiltonian Monte Carlo

𝐻(𝑥, 𝑚) = 𝑈(𝑥) + 𝐾(𝑚)

𝑑𝑚𝑖
𝑑𝑡 = −𝜕𝐻

𝑑𝑥𝑖
(7)

= −𝜕𝑈(𝑥)
𝑑𝑥𝑖

(8)

= 𝜕 log 𝑝(𝑥, 𝑦)
𝑑𝑥𝑖

. (9)

The change in the momentum accounted by the gradient of the posterior
(direction of the steepest ascent).
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Hamiltonian Monte Carlo

We previously defined a probability measure on a physical system (e.g.,
Ising model) in terms of energy in the system; we can associate probability
distribution to the physical system 𝑧:

𝑝(𝑧) = 1
𝑍 exp(−𝐸(𝑧)).

For Hamiltonian system, consider 𝐸(𝑧) = 𝐻(𝑥, 𝑚), 𝑧 = (𝑥, 𝑚).
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Hamiltonian Monte Carlo

With 𝐻(𝑥, 𝑚) = 𝑈(𝑥) + 𝐾(𝑚), the joint distribution of position and
momentum is independent:

𝑝(𝑥, 𝑚) ∝ exp(−𝐻(𝑥, 𝑚)) (10)
= exp(−𝑈(𝑥) − 𝐾(𝑚)) (11)
= exp(−𝑈(𝑥)) exp(−𝐾(𝑚)) (12)
= 𝑝(𝑥)𝑝(𝑚) (13)

We set 𝑈(𝑥) = − log 𝑝(𝑥|𝑦), yielding 𝑝(𝑥) = exp(−𝑈(𝑥)) = 𝑝(𝑥|𝑦).
And set 𝐾(𝑚) = − log 𝜙(𝑚), yielding 𝑝(𝑚) = exp(−𝐾(𝑚)) = 𝜙(𝑚).
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Hamiltonian Monte Carlo

We now have a joint distribution of position 𝑥 and momentum 𝑚. By
construction, the marginal distribution of 𝑥 is our target distribution:

∫ 𝑝(𝑥, 𝑚)𝑑𝑥 = 𝑝(𝑥).

So all that is left is to design an algorithm to sample from 𝑝(𝑥, 𝑚).

Hamiltonian Monte Carlo 15 / 33



Hamiltonian Monte Carlo

Initialize 𝑥0.

For 𝑡 = 1, ..., 𝑇 :

Propose a new momentum 𝑚 ∼ 𝑁(0, 𝐼)
(𝑥′, 𝑚′) = SimulateHamiltonian(𝑥𝑡−1, 𝑚)
Compute acceptance probability:

𝐴 = min(1, exp(𝑈(𝑥) − 𝑈(𝑥′) + 𝐾(𝑚) − 𝐾(𝑚′)))

Draw 𝑢 ∼ Uniform(0, 1)
▶ if 𝑢 < 𝐴 accept 𝑥𝑡 = 𝑥′
▶ otherwise 𝑥𝑡 = 𝑥𝑡−1.
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Leap frog

How do we simulate Hamiltonian dynamic?

Given a position 𝑥 and momentum 𝑚 at time 𝑡, Euler’s formula provides a
discretization of the continuous time dynamic that approximates the
position and momentum of the system at time 𝑡 + 𝜖 for some 𝜖 > 0:

𝑚(𝑡 + 𝜖) = 𝑚(𝑡) + 𝜖𝜕𝑝
𝑑𝑡 (𝑡) (14)

𝑥(𝑡 + 𝜖) = 𝑥(𝑡) + 𝜖𝜕𝑞
𝑑𝑡 (𝑡). (15)
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Leap frog

Adapted to our choice of 𝐻(𝑥, 𝑚) = 𝑈(𝑥) + 𝐾(𝑚) (fill in the blanks):

𝑚(𝑡 + 𝜖) = 𝑚(𝑡) − 𝜖𝜕𝑈
𝑑𝑥 (𝑥(𝑡)) (16)

𝑥(𝑡 + 𝜖) = 𝑥(𝑡) + 𝜖Σ−1𝑚(𝑡 + 𝜖). (17)

Hamiltonian Monte Carlo 18 / 33



Leap frog

Adapted to our choice of 𝐻(𝑥, 𝑚) = 𝑈(𝑥) + 𝐾(𝑚) (fill in the blanks):

𝑚(𝑡 + 𝜖) = 𝑚(𝑡) − 𝜖𝜕𝑈
𝑑𝑥 (𝑥(𝑡)) (16)

𝑥(𝑡 + 𝜖) = 𝑥(𝑡) + 𝜖Σ−1𝑚(𝑡 + 𝜖). (17)

Hamiltonian Monte Carlo 18 / 33



Leap frog
Euler’s discretization can be a bit crude.

Modified Euler: first take half step for the momentum followed by taking
the full step on the position, and then taking another half step for the
momentum.

𝑚(𝑡 + 𝜖/2) = 𝑚(𝑡) − (𝜖/2)𝜕𝑈
𝑑𝑥 (𝑥(𝑡)) (18)

𝑥(𝑡 + 𝜖) = 𝑥𝑖(𝑡) + 𝜖Σ−1𝑚(𝑡 + 𝜖/2) (19)

𝑚(𝑡 + 𝜖) = 𝑚(𝑡 + 𝜖/2) − (𝜖/2)𝜕𝑈
𝑑𝑥 (𝑥(𝑡 + 𝜖)). (20)

We can repeat the above update for 𝐿 steps to simulate the puck sliding
according to the Hamiltonian dynamics, utilizing the surface of the
distribution given by 𝑝(𝑥, 𝑚) to update the position and momentum.
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Leap frog

Hamiltonian dynamic is reversible and volume preserving (shown in the
paper).

But leap frog may introduce error due to discretization, Metropolis
accept-reject is needed to correct for the error.
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Why does this work?

For a Markov chain Monte Carlo algorithm to “work”, we need to prove
that the samples drawn from the algorithm are from the right target
distribution in our case, 𝑝(𝑥, 𝑚) = exp(−𝐻(𝑥, 𝑚)).
To that end, we need to show

1 Stationarity,
2 Ergodicity.

For Metropolis-Hastings and Gibbs, we showed that it satisfies a stronger
condition of detailed balance, which implies stationarity.

Hamiltonian Monte Carlo 21 / 33



Detailed balance

Let 𝐹 be the mapping defined by a Hamiltonian simulator. Let the current
system configuration be 𝑧 = (𝑥, 𝑚) such that 𝑧′ = 𝐹(𝑧) (this mapping is
deterministic given current position and momentum).

Reversible mapping means 𝑇 −1(𝑧′) = 𝑧 with the direction of the
momentum reversed:

Re-run the simulation starting at (𝑥′, −𝑚′) for 𝐿 steps with same 𝜖.
The final state will be (𝑥, −𝑚), flipt the momentum and we obtain
(𝑥, 𝑚).
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Detailed balance

Let 𝐾 be the HMC kernel. We need to show.

𝑝(𝑧)𝐾(𝑧 → 𝑧′) = 𝑝(𝑧′)𝐾(𝑧′ → 𝑧).

This is trivially true for self-transition (if 𝑇 (𝑧) is rejected, then 𝑧 = 𝑧′).

In the case that the new state 𝑧′ = 𝑇 (𝑧) is accepted, the kernel is
1 ∧ 𝑎(𝑧′|𝑧) = 1 ∧ exp(−𝐻(𝑧′))

exp(−𝐻(𝑧)) .
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Detailed balance

Case 1: exp(−𝐻(𝑧)) > exp(−𝐻(𝑧′)),

𝑝(𝑧)𝐾(𝑧 → 𝑧′) = exp(−𝐻(𝑧))exp(−𝐻(𝑧′))
exp(−𝐻(𝑧)) (21)

= exp(−𝐻(𝑧′)). (22)

On the other side,

𝑝(𝑧′)𝐾(𝑧′ → 𝑧) = exp(−𝐻(𝑧′)) ∧ 1 = exp(−𝐻(𝑧′)). (23)

Hamiltonian Monte Carlo 24 / 33



Detailed balance

Case 2: exp(−𝐻(𝑧)) ≤ exp(−𝐻(𝑧′)),

𝑝(𝑧)𝐾(𝑧 → 𝑧′) = exp(−𝐻(𝑧)) ∧ 1 (24)
= exp(−𝐻(𝑧)). (25)

On the other side,

𝑝(𝑧′)𝐾(𝑧′ → 𝑧) = exp(−𝐻(𝑧′)) exp(−𝐻(𝑧))
exp(−𝐻(𝑧′)) (26)

= exp(−𝐻(𝑧)). (27)
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Ergodicity

The momentum variable is sampled from global proposal (mean zero
Gaussian with identity matrix).
This momentum can affect the position variable in an arbitrary way.

Together, this means that all state is recurrent and aperiodic.

The only cautionary note is that the leapfrog algorithm may lead to
periodicity in some cases – this can be avoided by randomizing the
selection of 𝜖 or 𝐿.

No U-Turn Sampler (NUTS): an improvement over Leap frog (also
alleviates the above concern).
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Autodiff

Autodiff computes derivatives by systematically applying the chain
rule to the operations performed by your code. It “traces” the
computation graph and efficiently computes the derivatives.

It outputs the numerical values of the derivatives at specific input
values without generating an explicit symbolic expression.

Efficiency: (in reverse mode) very efficient for functions with many
inputs and a single output.
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Autodiff

Autodiff has propelled gradient based optimization, widely used for
training complex neural networks.

Using autodiff and HMC, it is now feasible to perform Bayesian
analysis on complex models without manual derivative
derivation/difficulties of MH.

These techniques have also enabled HMC to be widely deployed as
part of software packages where the user only needs to specify the
model, also known as probabilistic programming frameworks (e.g.,
Stan, PyMC, TensorFlow probability, Pyro, NumPyro, BlackJax).

Difference from symbolic differentiation?

Hamiltonian Monte Carlo 28 / 33



Symbolic differentiation

Symbolic differentiation manipulates the mathematical expression
symbolically and derives an explicit formula for the derivative.

Output is a symbolic expression. For complex models, this can lead
to an overwhelming expression that is hard to simplify.

Not very practical for large-scale computational problems due to the
overhead in generating and simplifying these expressions.
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Examples

Go over the figures in the paper.
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Example: Multinomial regression
𝑘 = 1, ..., 𝐾 categories and 𝑝 = 1, ..., 𝑃 covariates. Posterior:

𝑝(𝛽|𝑌 ) ∝
𝑁

∏
𝑛=1

𝑝(𝑦𝑛|𝛽)𝑝(𝛽), (28)

where,

𝑌𝑛|𝛽 ∼ exp(𝛽𝑇
𝑘 𝑥𝑛)

∑𝐾
𝑘′=1 exp(𝛽𝑇

𝑘′𝑥𝑛)
(29)

𝛽𝑘 ∼ 𝑁(0, 𝐼𝑃×𝑃 ). (30)

There are (𝐾 − 1) × 𝑃 parameters in this model (the last category chosen
as the “pivot” to avoid overparameterization and ensure identifiability).
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Example: Multinomial regression

Implement HMC (NumPyro).
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Example: Gaussian mixture model

Implement MH in class.
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