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Goal

Sample from a distribution:

𝑝(𝑥) = 𝛾(𝑥)
𝑍 ,

where 𝑍 = ∫ 𝛾(𝑥)𝑑𝑥.

We want to approximate complex integral: let 𝑥1, ..., 𝑥𝑁 ∼ 𝑝(𝑥), then for
any test function ℎ(𝑥):

𝔼𝑋∼𝑝[ℎ(𝑋)] = ∫ ℎ(𝑥)𝑝(𝑥)𝑑𝑥 ≈ 1
𝑁

𝑁
∑
𝑛=1

ℎ(𝑥𝑛).
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Bayesian statistics

Sample from a distribution:

𝑝(𝑥) = 𝛾(𝑥)
𝑍

𝑝(𝑥) = 𝑝(𝑥|𝑦): posterior

𝛾(𝑥) = 𝑝(𝑥, 𝑦): joint likelihood

𝑍 = 𝑝(𝑦) = ∫ 𝑝(𝑥, 𝑦)𝑑𝑥: marginal likelihood, which is usually
intractable.

Here, 𝑥 can be parameters or any latent variables of interest.
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Importance sampling

Instead of sampling from 𝑝 (hard to do because 𝑍 is unknown), sample
𝑥 ∼ 𝑞 and adjust for the difference between 𝛾 and 𝑞:

∫ ℎ(𝑥)𝑝(𝑥)𝑑𝑥 ≈ ∑ �̄�(𝑥)ℎ(𝑥),

where 𝑤(𝑥) = 𝛾(𝑥)/𝑞(𝑥) and �̄�(𝑥) = 𝑤(𝑥)/ ∑𝑛 𝑤(𝑥).
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Sequential Monte Carlo methods

If 𝑥 = (𝑥1, ..., 𝑥𝐷) is high-dimensional, we can sample each component
sequentially:

𝑥𝑛
𝑑 ∼ 𝑞𝑑(𝑥𝑑|𝑥1∶𝑑−1).

Interleave resampling step to maintain particle diversity and prune
unpromising particles.
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Sequential Monte Carlo methods

SMC methods work well when there is a temporal structure in 𝑥, where it
is natural to sample one dimension at a time.

So why do we need another algorithm/method?

Large variance associated with choice of proposal distribution.
Curse of dimensionality may still manifest and approximation can be
poor.
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Example: Lattice

Consider a 𝐾 × 𝐾 2-dimensional lattice 𝐺 = (𝑉 , 𝐸).
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Example: Lattice

Ising model: Each node represents a RV 𝑋𝑣 which takes a value in
{−1, +1}, denoting the “spin” of an atom/molecule.

Spatial analysis: Each node represents a spatial coordinate (spatial
statistics) and 𝑋𝑣 ∈ {no gold, gold!} or 𝑋𝑣 ∈ ℝ+ some measurement
of the amount of gold at location 𝑣.

Image processing: Each node represents a pixel of an image.
𝑋𝑣 ∈ {black, white} or gray scale 𝑋𝑣 ∈ [0, 1] or RGB color.
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Example: Ising model

Let 𝑋 = (𝑋𝑣). The “energy” function for the Ising model is defined as:

𝐻(𝑥) = ∑
𝑣

𝜙(𝑥𝑣) + ∑
(𝑢,𝑣)∈𝐸

𝜓(𝑥𝑢, 𝑥𝑣),

(𝑢, 𝑣) ∈ 𝐸 denote neighbors (adjacent nodes),
𝜙: unary potential,
𝜓: pairwise potential (measuring interaction strength).

Example: 𝜙(𝑥𝑣) = 𝛽𝑥𝑣 and 𝜓(𝑥𝑢, 𝑥𝑣) = 𝜅𝑥𝑢𝑥𝑣 for 𝛽, 𝜅 ∈ ℝ.
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Example: Ising model

The probability distribution on 𝑋 is defined as,

𝑝(𝑥) = 1
𝑍 exp(−𝐻(𝑥))

where

𝑍 = ∑
𝑥𝑣∶𝑣∈𝑉

exp(−𝐻(𝑥)).

𝑍 in statistical physics is referred to as “partition function”. Essentially a
normalization constant.
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SMC for Ising model?

Not obvious what order to sample the variables.
It could lead to very few unique values for 𝑥𝑣 sampled earlier in the
SMC iteration.
Leads to poor approximation involving those sampled earlier on.

For the Ising model, maybe it makese more sense to continually
sample new values for 𝑥𝑣 given 𝑥−𝑣 until we are satisfied.
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Metropolis-Hastings algorithm
Initialize 𝑥0.

For 𝑡 = 1, ..., 𝑇 :

Propose a value 𝑥′ ∼ 𝑞(⋅|𝑥𝑡−1).
Compute acceptance probability:

𝐴(𝑥′|𝑥) = min (1, 𝛾(𝑥′)
𝛾(𝑥𝑡−1)

𝑞(𝑥𝑡−1|𝑥′)
𝑞(𝑥′|𝑥𝑡−1)) .

Sample 𝑢 ∼ 𝑈(0, 1)
Set,

𝑥𝑡 = { 𝑥′ if 𝑢 < 𝐴
𝑥𝑡−1 otherwise
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Why does MH work?

If we take samples 𝑥1, ..., 𝑥𝑁 using MH algorithm, why is this
equivalent to taking samples from the target distribution 𝑝(𝑥)?
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Markov chain

Markov chain {𝑋𝑡} is a stochastic process modeling a sequence of events
where the probability of each event depends only on the previous event.

Markov property: 𝑝(𝑥𝑡|𝑥1∶𝑡−1) = 𝑝(𝑥𝑡|𝑥𝑡−1).
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Markov chain

Given measurable space (𝒳, ℱ),

𝐾 ∶ 𝒳 × ℱ → [0, 1]

is referred to as the Markov kernel (a probability measure).

Each random variable 𝑋𝑡 ∈ 𝒳
𝐾(𝑥, 𝐴) specifies the probability of moving to a set 𝐹 ∈ ℱ given
that the chain is in state 𝑥 ∈ 𝒳.
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Markov chain: continuous state space

For continuous state space, 𝒳 = ℝ, the transition probability can be
described using a density function 𝐾(𝑥𝑡−1, 𝑥𝑡) = 𝑘(𝑥𝑡|𝑥𝑡−1).

Markov chain Monte Carlo methods 16 / 51



Markov chain: discrete state space

For discrete state space, the Markov chain is described using a transition
matrix 𝑃 , where 𝑃𝑖𝑗represents the probability of transitioning from state
𝑃(𝑥𝑡 = 𝑗|𝑥𝑡−1 = 𝑖).
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Markov chain: stationary distribution

The Markov chain {𝑋𝑡} converges to unique stationary distribution as
𝑡 → ∞ if some conditions are satisfied.

A probability distribution 𝜋 defined on 𝒳 is invariant (stationary) under a
Markov kernel 𝐾 if for all 𝐹 ∈ ℱ

𝜋(𝐴) = ∫ 𝜋(𝑥)𝐾(𝑥, 𝐹)𝑑𝑥.

For discrete case: 𝜋 = 𝜋𝑃 .
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Markov chain: detailed balance (reversibility)

A Markov chain with kernel 𝐾 ∶ 𝒳 × ℱ satisfies the detailed balance
condition with respect to a probability distribution 𝜋 if,

𝜋(𝑥)𝑘(𝑥′|𝑥) = 𝜋(𝑥′)𝑘(𝑥|𝑥′).

Reversibility: probability of being in state 𝑥 and moving to 𝑥′ from 𝑥 is
the same as being in state 𝑥′ and moving to 𝑥.

Note: detailed balance is a stronger condition than stationary
condition: if detailed balance is satisfied, 𝜋 is a stationary distribution
of the Markov chain with kernel 𝐾.
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Markov chain: Ergodicity

1 Aperiodic: Markov chain does not return to the same state at some
fixed interval.

2 Positive recurrent: the expected number of steps for returning to the
same state is finite.
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Metropolis-Hastings is a Markov chain

Claim: MH algorithm constructs a Markov chain on 𝒳 whose stationary
distribution is 𝑝(𝑥).

Markov transition kernel:

given current state 𝑥, we move to a new state 𝑥′ with probability

𝑞(𝑥′|𝑥)𝐴(𝑥′|𝑥)

stay at current state 𝑥 with probability

𝑞(𝑥|𝑥) + 𝑞(𝑥′|𝑥)(1 − 𝐴(𝑥)).
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MH satisfies detailed balance

To prove: 𝑝(𝑥)𝑘(𝑥′|𝑥) = 𝑝(𝑥′)𝑘(𝑥|𝑥′).

To move from state 𝑥 to 𝑥′, we must first propose 𝑥′ and accept 𝑥′.

Case 1: 𝐴(𝑥′|𝑥) = 𝑝(𝑥′)𝑞(𝑥|𝑥′)
𝑝(𝑥)𝑞(𝑥′|𝑥) < 1.

𝑝(𝑥)𝑞(𝑥′|𝑥)𝐴(𝑥′|𝑥) = 𝑝(𝑥)𝑞(𝑥′|𝑥)𝑝(𝑥′)𝑞(𝑥|𝑥′)
𝑝(𝑥)𝑞(𝑥′|𝑥) (1)

= 𝑝(𝑥′)𝑞(𝑥|𝑥′). (2)
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MH satisfies detailed balance

Case 2: 𝐴(𝑥′|𝑥) ≥ 1.

𝑝(𝑥′)𝑞(𝑥|𝑥′)𝐴(𝑥|𝑥′) = 𝑝(𝑥′)𝑞(𝑥|𝑥′) 𝑝(𝑥)𝑞(𝑥′|𝑥)
𝑝(𝑥′)𝑞(𝑥|𝑥′) (3)

= 𝑝(𝑥)𝑞(𝑥′|𝑥). (4)
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Is MH an ergodic Markov chain?

Yes, as long as we choose our proposal carefully.

Randomness in 𝑘 is needed to prevent apriodicity. This is built-in the
MH kernel where we reject proposed values with some chance.

Recurrent: ensure that we choose a proposal that allows to visit every
state 𝑥 ∈ 𝒳. For example, Gaussian random walk
𝑞(𝑥′|𝑥) = 𝑁(𝑥′|𝑥, 𝜎2𝐼) satisfies this.

For discrete case, ensure 𝑞(𝑥′|𝑥) > 0 for all 𝑥′, 𝑥 ∈ 𝒳.
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Recurrent: ensure that we choose a proposal that allows to visit every
state 𝑥 ∈ 𝒳. For example, Gaussian random walk
𝑞(𝑥′|𝑥) = 𝑁(𝑥′|𝑥, 𝜎2𝐼) satisfies this.

For discrete case, ensure 𝑞(𝑥′|𝑥) > 0 for all 𝑥′, 𝑥 ∈ 𝒳.
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Metropolis-Hastings algorithm

Choosing a suitable Metropolis-Hastings proposal distribution 𝑞(𝑥′|𝑥)
is crucial.

A local proposal (e.g., small Guassian perturbation) allows gradual
exploration and prevents the chain from getting stuck.

Independent Metropolis refers to the case where a global proposal is
used 𝑞(𝑥′|𝑥) = 𝑞(𝑥′), which can lead to high rejection rates (why?).

Large global proposals tend to be rejected, causing the chain to get
stuck at a point for long periods.
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Gibbs sampling

Gibbs sampling is an MCMC algorithm, which is well suited for
high-dimensional distributions where sampling directly from the joint
distribution is difficult.
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Gibbs sampling

1 Initialize 𝑥0.

2 For 𝑡 = 1, ..., 𝑇 :

Iterate over each variable 𝑥𝑖:
▶ Sample 𝑥𝑡

𝑖 ∼ 𝑝(𝑥𝑖|𝑥𝑡
−𝑖), where 𝑥−𝑖 refers to all other variables except

𝑥𝑖.

This means that each variable is sampled from its conditional distribution
given the current values of all other variables.

Gibbs sampling is particularly effective when the conditional distributions
𝑝(𝑥𝑖|𝑥−𝑖) are easy to sample from.
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Why doe Gibbs sampling work?

Claim: Gibbs sampling can be viewed as a special case of the
Metropolis-Hastings algorithm where the proposal distribution is always
accepted.

Proof: Suppose we are proposing a new value for 𝑥𝑖. Let
𝑥′ = (𝑥1, ..., 𝑥𝑖−1, 𝑥′

𝑖, 𝑥𝑖+1, ..., 𝑥𝑁).

𝐴(𝑥′|𝑥) = 𝑝(𝑥′)𝑞(𝑥|𝑥′)
𝑝(𝑥)𝑞(𝑥′|𝑥)

= 𝑝(𝑥′
𝑖|𝑥−𝑖)𝑝(𝑥−𝑖)𝑞(𝑥|𝑥′)

𝑝(𝑥𝑖|𝑥−𝑖)𝑝(𝑥−𝑖)𝑞(𝑥′|𝑥) .

Since 𝑞(𝑥′|𝑥) = 𝑝(𝑥′
𝑖|𝑥−𝑖) and 𝑞(𝑥|𝑥′) = 𝑝(𝑥𝑖|𝑥−𝑖), the acceptance

probability simplifies to 1.
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Gibbs for Ising model

For 𝑡 = 1, ..., 𝑇 :

Sample 𝑥𝑣 ∼ 𝑝(𝑥𝑣|𝑥−𝑣) for each 𝑣 ∈ 𝑉 .

Sample each variable in turn, conditioned on the values of all of the other
variables.

What does 𝑝(𝑥𝑣|𝑥−𝑣) look like?
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Gibbs sampling for Ising model

𝑝(𝑥𝑣|𝑥−𝑣) = 𝑝(𝑥𝑣, 𝑥−𝑣)
∑𝑥′𝑣

𝑝(𝑥′𝑣, 𝑥−𝑣) (5)

∝ exp(−𝜙(𝑥𝑣) − ∑
(𝑢,𝑣)∈𝐸

𝜓(𝑥𝑢, 𝑥𝑣)). (6)
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Example: image denoising

Figure 1: Fig 12.3 (a), PML 2

If all of the neighbors of 𝑥𝑣 is white/black, 𝑥𝑣 is likely to be white/black.
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Example: image denoising

Figure 2: Fig 12.3 (b), PML 2
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Example: image denoising

Figure 3: Fig 12.3 (c), PML 2
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Undirected graphical models

Undirected graphical models (UGM):

Each node 𝑣 ∈ 𝑉 represents a random variable.

Edge between 𝑢, 𝑣 ∈ 𝑉 is denoted (𝑢, 𝑣). Presence of an edge
indicates that there is a symmetric relationship between 𝑢 and 𝑣 but
we cannot easily pinpoint directionality.
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Undirected graphical models

UGMs are commonly referred to as Markov Random Field (MRF).

Commonly used for modeling dependence structure where
directionality is unclear.

Example: The value taken at each pixel (random variable 𝑋𝑣) is
related to the value taken by its neighbors but it is not causal.
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Undirected graphical models

Pairwise Markov property: For any two non-adjacent nodes 𝑢, 𝑣,
𝑋𝑢⊥𝑋𝑣|𝑋𝑟𝑒𝑠𝑡.

Local Markov property: 𝑋𝑢⊥𝑋𝑟𝑒𝑠𝑡|𝑋𝑛𝑏𝑟(𝑢), where
𝑛𝑏𝑟(𝑢) = {𝑣 ∶ (𝑢, 𝑣) ∈ 𝐸}.

Global Markov property:

Any two sets 𝐴, 𝐵 ⊂ 𝑉 , are conditionally independent given a separating
set 𝑆, i.e., 𝑋𝐴⊥𝑋𝐵|𝑋𝑆, if 𝑆 separates 𝐴 and 𝐵 in 𝐺.
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Undirected graphical models

Figure 4: Global Markov property
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Undirected graphical models

Markov blanket of 𝑣 is defined as a minimal set of nodes that separates 𝑣
from the rest of the nodes. It is given by, 𝑀𝐵(𝑣) = 𝑛𝑏𝑟(𝑣).

MB plays a central role in determining efficient inference algorithm.
Example, Gibbs sampling update of a variable 𝑋𝑣 is conditioned on its MB
and nothing else.
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Undirected graphical models

Figure 5: Markov blanket
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Undirected graphical models: Hammersley-Clifford
Theorem

A strictly positive probability distribution 𝑝(𝑥𝑉 ) satisfies the global Markov
property with respect to 𝐺 if and only if it can be factorized as,

𝑝(𝑥𝑉 ) = 1
𝑍 ∏

𝐶∈𝒞
𝜓𝐶(𝑥𝐶),

𝒞 denotes the set of (maximal) cliques,
𝜓𝐶 denotes potential function for clicque 𝐶,
𝑍 is normalization constant also referred to as partition function.
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Undirected graphial models

Clique 𝐶 ⊆ 𝑉 of 𝐺 = (𝑉 , 𝐸) is a fully connected subgraph of 𝐺 such
that every pair of nodes 𝑢, 𝑣 ∈ 𝐶 are adjacent i.e., {𝑢, 𝑣} ∈ 𝐸.

A clique 𝐶 is maximal if adding a node to 𝐶 does not preserve full
connectivity.
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Undirected graphical models

Figure 6: Example: Markov blanket

An edge {𝑢, 𝑣} is a clique. A fully connected set of nodes is a clique.
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Undirected graphial models

Computing partition function is a source of great computational challenge:

𝑍 = ∫
𝒳𝑉

∏
𝐶∈𝒞

𝜓𝐶(𝑥𝐶).

In most cases, the inference involving UGM requires approximate methods.
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Undirected graphical models

What are the maximal cliques in this graph?
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Back to Gibbs sampling

Given an UGM, determine the Markov blanket for each node 𝑣.

Determine the conditional 𝑝(𝑥𝑣|𝑥𝑚𝑏(𝑣)).
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Back to Gibbs sampling
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Blocked Gibbs sampling

Partition the nodes into disjoint sets 𝐴, 𝐵 ⊂ 𝑉 such that

𝑥𝑢⊥𝑥𝑣|𝐵, 𝑢, 𝑣 ∈ 𝐴

and

𝑥𝑢⊥𝑥𝑣|𝐴, 𝑢, 𝑣 ∈ 𝐵.

At each iteration 𝑡 = 1, ..., 𝑇 :

Sample 𝑝(𝑥𝐴|𝑥−𝐴),
Sample 𝑝(𝑥𝐵|𝑥−𝐵).
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Blocked Gibbs sampling
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Blocked Gibbs sampling
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Summary

Selecting the right inference algorithm depends on the problem’s
structure and computational constraints.

MCMC methods can be utilized to sample from intractable
distributions.

Metropolis-Hastings provides general sampling but requires careful
proposal design for efficiency.

Gibbs sampling is efficient when conditional distributions are easy to
sample from, leveraging local dependencies.

MRFs serve as a foundation for probabilistic inference, particularly in
structured probabilistic models.
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Applications of UGMs

Neuroscience and associative memory: Hopfield networks (1982,
1984).

▶ Energy-based models for pattern recognition and memory retrieval.

Deep learning: Restricted Boltzmann Machines (1986,2006).
▶ Probabilistic generative models used in unsupervised pre-training of

deep networks. Inspired contrastive divergence and other energy-based
models in deep learning: the first “deep” neural network.

Natural language processing and large language models (2017)
▶ GPT-based large language models capture token dependencies.
▶ The architecture is not a UGM (transformers use self-attention) but

GPT learns long-range dependencies between tokens (subword) in
non-sequential manner (not directional).
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▶ The architecture is not a UGM (transformers use self-attention) but

GPT learns long-range dependencies between tokens (subword) in
non-sequential manner (not directional).
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