Markov Chain Sampling Methods for Dirichlet Process Mixture Models

\boldsymbol{K} component mixture model

$$\begin{split} \pi &\sim \text{Dirichlet}(\alpha/K,...,\alpha/K) & (1) \\ z_i | \pi &\sim \text{Categorical}(\pi) & (2) \\ \theta_k | H &\sim H & (3) \\ y_i | z_i, \theta &\sim F(\theta_{z_i}), & (4) \end{split}$$

 $\alpha > 0$ and H is the prior over the parameters $\theta_k \in \Theta$.

\boldsymbol{K} component mixture model

When K is known, we have seen that EM-algorithm can be applied to estimate the parameters.

But in many settings, K is unknown and we need to experiment with different values of K.

Applications

• Topic modeling: organize/label a corpus of documents into K topics. How do you choose K?

Applications

- Topic modeling: organize/label a corpus of documents into K topics. How do you choose K?
- Cancer clonal detection: given an admixture of cells, detect the number of cancer subpopulations.

Applications

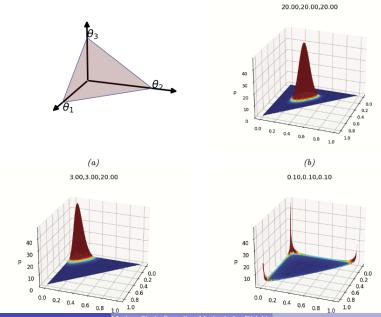
- Topic modeling: organize/label a corpus of documents into K topics. How do you choose K?
- Cancer clonal detection: given an admixture of cells, detect the number of cancer subpopulations.
- Density estimation: modeling multi-modal distribution with unknown components.

 $\bullet\,$ "Distribution" of (discrete) distributions over K categories.

 $\pi \sim \mathsf{Dirichlet}(\alpha)$

• $\pi_k \in [0, 1].$ • $\sum_{k=1}^{K} \pi_k = 1.$

Dirichlet distribution



Markov Chain Sampling Methods for Dirichle

When K is known, we use Dirichlet distribution.

When K is not known, we use a Dirichlet Process to place a prior over distributions (or, an unbounded mixture). Let's see how that works and what is a distribution over distributions?

Distribution over infinite-dimensional discrete probability measures:

 $G \sim \mathsf{DP}(H, \alpha),$

where H is the base measure defined on Θ and $\alpha>0$ is the concentration parameters.

• G is a random probability measure defined on Θ .

G is Dirichlet process distributed with base distribution H and concentration parameter $\alpha,$ if and only if

 $(G(A_1),...,G(A_K)) \sim \mathsf{Dirichlet}(\alpha H(A_1),...,\alpha H(A_K))$

for every finite measurable partition $A_1,...,A_K$ of $\Theta.$

Note: $G(A_k)$ is a random variable because G is a random measure.

Dirichlet Process

- $\bullet \ \mathbb{E}[G(A)] = H(A).$
- $\bullet \ \mathrm{var}(G(A)) = H(A)(1-H(A))/(\alpha+1).$

Larger the value of $\alpha,$ the smaller the variance (concentrated around the mean H(A)).

A measure G sampled from DP is discrete with probability 1.

Posterior distribution of ${\boldsymbol{G}}$

Since G is a distribution, we can draw samples from G. Let $\theta_i \sim G.$

Given $\theta_1,...,\theta_N$, what is the posterior distribution $p(G|\theta_{1:N})?$

Posterior distribution of G

Let $n_k = |\{i: \theta_i \in A_k\}|$, the number of points that fall in A_k .

- $(G(A_1), ..., G(A_K)) \sim \text{Dirichlet}(\alpha H(A_1), ..., \alpha H(A_K))$ • $(n_1, ..., n_K) \sim \text{Multinomial}(G(A_1), ..., G(A_K))$
- Dirichlet and Multinomial are conjugate distributions:

$$(G(A_1),...,G(A_K))|\theta_1,...,\theta_N\sim \mathsf{Dirichlet}(\alpha_k'),$$

where

$$\alpha_k' = \alpha H(A_k) + n_k.$$

Posterior over G

 $G\sim DP(\alpha,H)$ if and only if for disjoint partition $A_1,...,A_K$ of Θ such that,

$$(G(A_1),...,G(A_K)) \sim \mathsf{Dirichlet}(\alpha H(A_1),...,\alpha H(A_K)).$$

Since the result from previous slide holds for arbitrary partition $(A_1,...,A_K)$, the posterior distribution $G|\theta_{1:N}$ is also a Dirichlet Process.

Therefore, DP provides a conjugate family of priors over (discrete) probability distributions.

Posterior over G

How do we update the hyperparameters?

$$G|\theta_1,...,\theta_N \sim DP(\alpha',H')$$

 $\alpha' = \alpha + N \text{ and }$

$$H' = \frac{\alpha H + \sum_{i=1}^{N} \delta_{\theta_i}}{\alpha + N},$$

weighted measure between the base measure H and empirical measure $\delta = \sum \delta_{\theta_i}.$

Why?

Posterior over G

We know that,

$$(G(A_1),...,G(A_K))|\theta_{1:N}\sim \mathsf{Dirichlet}(\alpha H(A_k)+n_k),$$

which has density

$$\prod_{k=1}^K G(A_k)^{\alpha H(A_k)+n_k-1}.$$

This implies that $\alpha' = \sum_{k=1}^K (\alpha H(A_k) + n_k) = \alpha \cdot 1 + N.$

$$\alpha' H'(A_k) = \alpha H(A_k) + n_k \Rightarrow H'(A_k) = \frac{\alpha H(A_k) + n_k}{\alpha + N}.$$

Note: $n_k = \sum_{i=1}^N \delta_{\theta_i}(A_k).$

Stick breaking process

Does such stochastic process exist? Yes, Sethuraman's stick breaking construction.

Let u be a unit stick (length 1). We will break this stick infinite number of times.

For $i=1,...,\infty$,

• Sample
$$\beta_i \sim \text{Beta}(1, \alpha)$$

• Set $\pi_i = \beta_i \prod_{n=1}^{i-1} (1 - \beta_i)$; $\pi_1 = \beta_1$.

• Sample
$$\theta_i \sim H$$
.

$$G = \sum_i \pi_i \delta_{\theta_i}$$

is a realization from $DP(\alpha,H)$

[Simulate this process N times for different values of α]

Generative model.

Generative model.

We first sample a random measure: $G \sim \mathsf{DP}(\alpha, H)$.

Generative model.

- We first sample a random measure: $G \sim \mathsf{DP}(\alpha, H)$.
- We then sample parameters for each datum *i*: $\theta_i | G \sim G$.

Generative model.

- We first sample a random measure: $G \sim \mathsf{DP}(\alpha, H)$.
- We then sample parameters for each datum $i:\; \theta_i | G \sim G.$
- Finally, sample the datum: $y_i | \theta_i \sim F(\theta_i)$.

Generative model.

- We first sample a random measure: $G \sim \mathsf{DP}(\alpha, H)$.
- We then sample parameters for each datum *i*: $\theta_i | G \sim G$.

Finally, sample the datum: $y_i | \theta_i \sim F(\theta_i)$.

How does this model solve the clustering problem with unknown K?

To simplify discussion,

• Let H be Normal distribution defined on Θ where $\Theta = (\mathbb{R}, \mathbb{R}^+)$ (parameter space of location and scale).

To simplify discussion,

- Let H be Normal distribution defined on Θ where $\Theta = (\mathbb{R}, \mathbb{R}^+)$ (parameter space of location and scale).
- Let F also be Normal distribution with $\theta_i = (\mu_i, \sigma_i^2) \in \Theta$.

To simplify discussion,

- Let H be Normal distribution defined on Θ where $\Theta = (\mathbb{R}, \mathbb{R}^+)$ (parameter space of location and scale).
- Let F also be Normal distribution with $\theta_i=(\mu_i,\sigma_i^2)\in\Theta.$

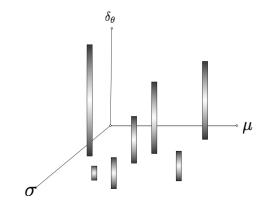
G is a random distribution of infinite dimension (K = 1, 2, 3, ...).

To simplify discussion,

- Let H be Normal distribution defined on Θ where $\Theta = (\mathbb{R}, \mathbb{R}^+)$ (parameter space of location and scale).
- Let F also be Normal distribution with $\theta_i = (\mu_i, \sigma_i^2) \in \Theta.$

G is a random distribution of infinite dimension (K = 1, 2, 3, ...).

G is discrete with probability $1\Rightarrow$ some θ_i will be repeated \Rightarrow clustering but with undetermined dimension K.



Each bar represents a unique θ_k and the length indicates $\sum_i 1[\theta_i = \theta_k]$.

How do we do posterior inference? We need a prior over partitions.

• Consider a Chinese restaurant with infinitely many tables

How do we do posterior inference? We need a prior over partitions.

- Consider a Chinese restaurant with infinitely many tables
- First customer enters the restaurant and chooses a table to seat and selects a dish $\theta \sim H.$

How do we do posterior inference? We need a prior over partitions.

- Consider a Chinese restaurant with infinitely many tables
- First customer enters the restaurant and chooses a table to seat and selects a dish $\theta \sim H.$
- Each subsequent customer enters the restaurant, selects one of K tables based on probability:

How do we do posterior inference? We need a prior over partitions.

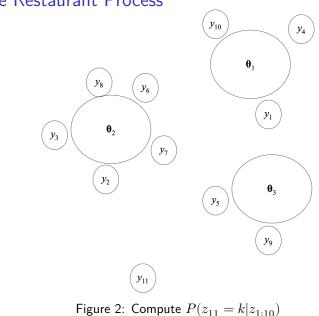
- Consider a Chinese restaurant with infinitely many tables
- First customer enters the restaurant and chooses a table to seat and selects a dish $\theta \sim H.$
- Each subsequent customer enters the restaurant, selects one of K tables based on probability:

$$p(z_i=k|z_{1:i-1})=\frac{n_k}{i-1+\alpha}$$

and shares the dish $\boldsymbol{\theta}_k$ or seat on a new table

$$p(z_i=k'|z_{1:i-1})=\frac{\alpha}{i-1+\alpha}$$

and sample a new dish $\theta \sim H$.



Clustering

CRP is a prior over partition. To cluster data, we need:

$$p(z_i = k | y_i, y_{-i}, z_{-i}) \propto p(y_i | z_i = k, y_{-i}, z_{-i}) p(z_i = k | z_{-i})$$
(5)

Clustering

CRP is a prior over partition. To cluster data, we need:

$$p(z_i = k | y_i, y_{-i}, z_{-i}) \propto p(y_i | z_i = k, y_{-i}, z_{-i}) p(z_i = k | z_{-i})$$
(5)

•
$$p(y_i|z_i, y_{-i}, z_{-i})$$
: likelihood.

Clustering

CRP is a prior over partition. To cluster data, we need:

$$p(z_i = k | y_i, y_{-i}, z_{-i}) \propto p(y_i | z_i = k, y_{-i}, z_{-i}) p(z_i = k | z_{-i})$$
(5)

•
$$p(y_i|z_i, y_{-i}, z_{-i})$$
: likelihood.

• $p(z_i = k | z_{-i})$: CRP prior over assignment probability.

Clustering

CRP is a prior over partition. To cluster data, we need:

$$p(z_i = k | y_i, y_{-i}, z_{-i}) \propto p(y_i | z_i = k, y_{-i}, z_{-i}) p(z_i = k | z_{-i})$$
(5)

•
$$p(y_i|z_i, y_{-i}, z_{-i})$$
: likelihood.

• $p(z_i = k | z_{-i})$: CRP prior over assignment probability.

Perform the above step sequentially for datum i = 1, ..., N.

Clustering

CRP is a prior over partition. To cluster data, we need:

$$p(z_i = k | y_i, y_{-i}, z_{-i}) \propto p(y_i | z_i = k, y_{-i}, z_{-i}) p(z_i = k | z_{-i})$$
(5)

•
$$p(y_i|z_i, y_{-i}, z_{-i})$$
: likelihood.

• $p(z_i = k | z_{-i})$: CRP prior over assignment probability.

Perform the above step sequentially for datum i = 1, ..., N.

Note: the order in which we assign datum does not matter. Why?

Clustering

CRP is a prior over partition. To cluster data, we need:

$$p(z_i = k | y_i, y_{-i}, z_{-i}) \propto p(y_i | z_i = k, y_{-i}, z_{-i}) p(z_i = k | z_{-i})$$
(5)

•
$$p(y_i|z_i, y_{-i}, z_{-i})$$
: likelihood.

• $p(z_i = k | z_{-i})$: CRP prior over assignment probability.

Perform the above step sequentially for datum i = 1, ..., N.

Note: the order in which we assign datum does not matter. Why? Exchangeability (De Finetti's theorem).

For t = 1, ..., T (MCMC chain length):

For t = 1, ..., T (MCMC chain length):

• Assign datum i = 1, ..., N according to Eq~(5).

For t = 1, ..., T (MCMC chain length):

• Assign datum i = 1, ..., N according to Eq~(5).

Sample $\theta_k | \{ y_j : z_j = k \}$ for each table k.

For t = 1, ..., T (MCMC chain length):

• Assign datum i = 1, ..., N according to Eq~(5).

2 Sample
$$\theta_k | \{ y_j : z_j = k \}$$
 for each table k.

This is known as Metropolis-within-Gibbs. The overall procedure of assigning datum is Gibbs; sampling parameters to explain the data for each table is done using MH.

Note: MH-w-Gibbs preserves maintains detailed balance condition.

Collapsed Gibbs sampling

If H and F are conjugate, then we do not need to explicitly represent θ_k , we can marginalize it out to obtain the predictive distribution:

$$p(y_i|z_i = k, z_{-i}, y_{-i}) = \int F(y_i|\theta') p(\theta'|\{y_j : z_j = k\}) d\theta'$$
 (6)

where $p(\theta'|\{y_j : z_j = k\})$ represents the posterior distribution of θ_k given the data points assigned to k: $\{y_j : z_j = k\}$.

Example: F and H are Normally distributed, then the posterior is also Normally distributed.

Collapsed Gibbs algorithm for DPMM (Algorithm 3)

For t = 1, ..., T (MCMC chain length):

Collapsed Gibbs algorithm for DPMM (Algorithm 3)

For t = 1, ..., T (MCMC chain length):

• Assign datum i = 1, ..., N according to Eq~(5). Update the posterior distribution $p(\theta_k | \{y_j : z_j = k\})$.

Implementation notes

How do we implement this?

Additional slides

- CRP as predictive distribution.
- Exchangeability.
- De Finetti's theorem.

Predictive distribution (CRP)

The predictive distribution, with G marginalized:

$$p(\boldsymbol{\theta}_{N+1} \in A | \boldsymbol{\theta}_{1:N}) = \mathbb{E}[\boldsymbol{1}[\boldsymbol{\theta}_{N+1} \in A] | \boldsymbol{\theta}_{1:N}].$$

$$\mathbb{E}[1[\theta_{N+1} \in A] | \theta_{1:N}] = \int 1[\theta_{N+1} \in A] p(G|\theta_{1:N}) dG.$$

Since $\theta_{N+1} \sim G$, $\mathbb{E}[1[\theta_{N+1} \in A]|G] = G(A)$. Hence, $p(\theta_{N+1} \in A | \theta_{1:N}) = \mathbb{E}[G(A)|\theta_{1:N}]$.

$$\mathbb{E}[G(A)|\theta_{1:N}] = H'(A) = \frac{\alpha}{\alpha+N}H(A) + \frac{1}{\alpha+N}\sum_{i=1}^N \delta_{\theta_i}(A).$$

Exchangeability

A sequence of random variables $Y_1,...,Y_N$ is exchangeable if for some permutation $\sigma:$

$$p(y_1,...,y_N) =_d p(y_{\sigma(1)},...,y_{\sigma(N)})$$

Any infinite exchangeable sequence of random variables can be viewed as i.i.d. draws from a latent distribution G.

$$p(y_1,...,y_N|G) = \prod_i p(y_i|G)$$

Any infinite exchangeable sequence of random variables can be viewed as i.i.d. draws from a latent distribution G.

$$p(y_1,...,y_N|G) = \prod_i p(y_i|G)$$

• i.i.d \Rightarrow Exchangeability but reverse is not true.