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𝐾 component mixture model

𝜋 ∼ Dirichlet(𝛼/𝐾, ..., 𝛼/𝐾) (1)
𝑧𝑖|𝜋 ∼ Categorical(𝜋) (2)

𝜃𝑘|𝐻 ∼ 𝐻 (3)
𝑦𝑖|𝑧𝑖, 𝜃 ∼ 𝐹(𝜃𝑧𝑖

), (4)

𝛼 > 0 and 𝐻 is the prior over the parameters 𝜃𝑘 ∈ Θ.
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𝐾 component mixture model

When 𝐾 is known, we have seen that EM-algorithm can be applied to
estimate the parameters.

But in many settings, 𝐾 is unknown and we need to experiment with
different values of 𝐾.
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Applications

Topic modeling: organize/label a corpus of documents into 𝐾 topics.
How do you choose 𝐾?

Cancer clonal detection: given an admixture of cells, detect the
number of cancer subpopulations.

Density estimation: modeling multi-modal distribution with unknown
components.
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Dirichlet distribution

“Distribution” of (discrete) distributions over 𝐾 categories.

𝜋 ∼ Dirichlet(𝛼)

𝜋𝑘 ∈ [0, 1].
∑𝐾

𝑘=1 𝜋𝑘 = 1.
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Dirichlet distribution

Figure 1: Figure 2.6 PML2
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Dirichlet Process

When 𝐾 is known, we use Dirichlet distribution.

When 𝐾 is not known, we use a Dirichlet Process to place a prior over
distributions (or, an unbounded mixture). Let’s see how that works and
what is a distribution over distributions?
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Dirichlet Process

Distribution over infinite-dimensional discrete probability measures:

𝐺 ∼ DP(𝐻, 𝛼),

where 𝐻 is the base measure defined on Θ and 𝛼 > 0 is the concentration
parameters.

𝐺 is a random probability measure defined on Θ.
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Dirichlet Process

𝐺 is Dirichlet process distributed with base distribution 𝐻 and
concentration parameter 𝛼, if and only if

(𝐺(𝐴1), ..., 𝐺(𝐴𝐾)) ∼ Dirichlet(𝛼𝐻(𝐴1), ..., 𝛼𝐻(𝐴𝐾))

for every finite measurable partition 𝐴1, ..., 𝐴𝐾 of Θ.

Note: 𝐺(𝐴𝑘) is a random variable because 𝐺 is a random measure.
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Dirichlet Process

𝔼[𝐺(𝐴)] = 𝐻(𝐴).
var(𝐺(𝐴)) = 𝐻(𝐴)(1 − 𝐻(𝐴))/(𝛼 + 1).

Larger the value of 𝛼, the smaller the variance (concentrated around the
mean 𝐻(𝐴)).
A measure 𝐺 sampled from DP is discrete with probability 1.

Markov Chain Sampling Methods for Dirichlet Process Mixture Models 10 / 30



Posterior distribution of 𝐺

Since 𝐺 is a distribution, we can draw samples from 𝐺.

Let 𝜃𝑖 ∼ 𝐺.

Given 𝜃1, ..., 𝜃𝑁 , what is the posterior distribution 𝑝(𝐺|𝜃1∶𝑁)?
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Posterior distribution of 𝐺

Let 𝑛𝑘 = |{𝑖 ∶ 𝜃𝑖 ∈ 𝐴𝑘}|, the number of points that fall in 𝐴𝑘.

(𝐺(𝐴1), ..., 𝐺(𝐴𝐾)) ∼ Dirichlet(𝛼𝐻(𝐴1), ..., 𝛼𝐻(𝐴𝐾))
(𝑛1, ..., 𝑛𝐾) ∼ Multinomial(𝐺(𝐴1), ..., 𝐺(𝐴𝐾))
Dirichlet and Multinomial are conjugate distributions:

(𝐺(𝐴1), ..., 𝐺(𝐴𝐾))|𝜃1, ..., 𝜃𝑁 ∼ Dirichlet(𝛼′
𝑘),

where

𝛼′
𝑘 = 𝛼𝐻(𝐴𝑘) + 𝑛𝑘.
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Posterior over 𝐺

𝐺 ∼ 𝐷𝑃(𝛼, 𝐻) if and only if for disjoint partition 𝐴1, ..., 𝐴𝐾 of Θ such
that,

(𝐺(𝐴1), ..., 𝐺(𝐴𝐾)) ∼ Dirichlet(𝛼𝐻(𝐴1), ..., 𝛼𝐻(𝐴𝐾)).

Since the result from previous slide holds for arbitrary partition
(𝐴1, ..., 𝐴𝐾), the posterior distribution 𝐺|𝜃1∶𝑁 is also a Dirichlet Process.

Therefore, DP provides a conjugate family of priors over (discrete)
probability distributions.

Markov Chain Sampling Methods for Dirichlet Process Mixture Models 13 / 30



Posterior over 𝐺

How do we update the hyperparameters?

𝐺|𝜃1, ..., 𝜃𝑁 ∼ 𝐷𝑃(𝛼′, 𝐻′)

𝛼′ = 𝛼 + 𝑁 and

𝐻′ =
𝛼𝐻 + ∑𝑁

𝑖=1 𝛿𝜃𝑖

𝛼 + 𝑁 ,

weighted measure between the base measure 𝐻 and empirical measure
𝛿 = ∑ 𝛿𝜃𝑖

.

Why?
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Posterior over 𝐺
We know that,

(𝐺(𝐴1), ..., 𝐺(𝐴𝐾))|𝜃1∶𝑁 ∼ Dirichlet(𝛼𝐻(𝐴𝑘) + 𝑛𝑘),

which has density

𝐾
∏
𝑘=1

𝐺(𝐴𝑘)𝛼𝐻(𝐴𝑘)+𝑛𝑘−1.

This implies that 𝛼′ = ∑𝐾
𝑘=1(𝛼𝐻(𝐴𝑘) + 𝑛𝑘) = 𝛼 ⋅ 1 + 𝑁 .

𝛼′𝐻′(𝐴𝑘) = 𝛼𝐻(𝐴𝑘) + 𝑛𝑘 ⇒ 𝐻′(𝐴𝑘) = 𝛼𝐻(𝐴𝑘) + 𝑛𝑘
𝛼 + 𝑁 .

Note: 𝑛𝑘 = ∑𝑁
𝑖=1 𝛿𝜃𝑖

(𝐴𝑘).
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Stick breaking process
Does such stochastic process exist? Yes, Sethuraman’s stick breaking
construction.

Let 𝑢 be a unit stick (length 1). We will break this stick infinite number of
times.

For 𝑖 = 1, ..., ∞,

Sample 𝛽𝑖 ∼ Beta(1, 𝛼)
Set 𝜋𝑖 = 𝛽𝑖 ∏𝑖−1

𝑛=1(1 − 𝛽𝑖); 𝜋1 = 𝛽1.
Sample 𝜃𝑖 ∼ 𝐻.

𝐺 = ∑
𝑖

𝜋𝑖𝛿𝜃𝑖

is a realization from 𝐷𝑃(𝛼, 𝐻)
[Simulate this process 𝑁 times for different values of 𝛼]

Markov Chain Sampling Methods for Dirichlet Process Mixture Models 16 / 30



Dirichlet process mixture model

Generative model.

We first sample a random measure: 𝐺 ∼ DP(𝛼, 𝐻).
We then sample parameters for each datum 𝑖: 𝜃𝑖|𝐺 ∼ 𝐺.

Finally, sample the datum: 𝑦𝑖|𝜃𝑖 ∼ 𝐹(𝜃𝑖).
How does this model solve the clustering problem with unknown 𝐾?
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Dirichlet process mixture model

To simplify discussion,

Let 𝐻 be Normal distribution defined on Θ where Θ = (ℝ, ℝ+)
(parameter space of location and scale).

Let 𝐹 also be Normal distribution with 𝜃𝑖 = (𝜇𝑖, 𝜎2
𝑖 ) ∈ Θ.

𝐺 is a random distribution of infinite dimension (𝐾 = 1, 2, 3, ...).
𝐺 is discrete with probability 1 ⇒ some 𝜃𝑖 will be repeated ⇒ clustering
but with undetermined dimension 𝐾.
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Dirichlet process mixture model

Each bar represents a unique 𝜃𝑘 and the length indicates ∑𝑖 1[𝜃𝑖 = 𝜃𝑘].
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Chinese Restaurant Process
How do we do posterior inference? We need a prior over partitions.

Consider a Chinese restaurant with infinitely many tables

First customer enters the restaurant and chooses a table to seat and
selects a dish 𝜃 ∼ 𝐻.

Each subsequent customer enters the restaurant, selects one of 𝐾
tables based on probability:

𝑝(𝑧𝑖 = 𝑘|𝑧1∶𝑖−1) = 𝑛𝑘
𝑖 − 1 + 𝛼

and shares the dish 𝜃𝑘 or seat on a new table

𝑝(𝑧𝑖 = 𝑘′|𝑧1∶𝑖−1) = 𝛼
𝑖 − 1 + 𝛼

and sample a new dish 𝜃 ∼ 𝐻.
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Chinese Restaurant Process

Figure 2: Compute 𝑃(𝑧11 = 𝑘|𝑧1∶10)
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Clustering

CRP is a prior over partition. To cluster data, we need:

𝑝(𝑧𝑖 = 𝑘|𝑦𝑖, 𝑦−𝑖, 𝑧−𝑖) ∝ 𝑝(𝑦𝑖|𝑧𝑖 = 𝑘, 𝑦−𝑖, 𝑧−𝑖)𝑝(𝑧𝑖 = 𝑘|𝑧−𝑖) (5)

𝑝(𝑦𝑖|𝑧𝑖, 𝑦−𝑖, 𝑧−𝑖): likelihood.

𝑝(𝑧𝑖 = 𝑘|𝑧−𝑖): CRP prior over assignment probability.

Perform the above step sequentially for datum 𝑖 = 1, ..., 𝑁 .

Note: the order in which we assign datum does not matter. Why?

Exchangeability (De Finetti’s theorem).
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Gibbs algorithm for DPMM (Algorithm 2)

For 𝑡 = 1, ..., 𝑇 (MCMC chain length):

1 Assign datum 𝑖 = 1, ..., 𝑁 according to Eq~(5).
2 Sample 𝜃𝑘|{𝑦𝑗 ∶ 𝑧𝑗 = 𝑘} for each table 𝑘.

This is known as Metropolis-within-Gibbs. The overall procedure of
assigning datum is Gibbs; sampling parameters to explain the data for
each table is done using MH.

Note: MH-w-Gibbs preserves maintains detailed balance condition.
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Note: MH-w-Gibbs preserves maintains detailed balance condition.
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Collapsed Gibbs sampling

If 𝐻 and 𝐹 are conjugate, then we do not need to explicitly represent 𝜃𝑘,
we can marginalize it out to obtain the predictive distribution:

𝑝(𝑦𝑖|𝑧𝑖 = 𝑘, 𝑧−𝑖, 𝑦−𝑖) = ∫ 𝐹(𝑦𝑖|𝜃′)𝑝(𝜃′|{𝑦𝑗 ∶ 𝑧𝑗 = 𝑘})𝑑𝜃′ (6)

where 𝑝(𝜃′|{𝑦𝑗 ∶ 𝑧𝑗 = 𝑘}) represents the posterior distribution of 𝜃𝑘 given
the data points assigned to 𝑘: {𝑦𝑗 ∶ 𝑧𝑗 = 𝑘}.

Example: 𝐹 and 𝐻 are Normally distributed, then the posterior is also
Normally distributed.
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Collapsed Gibbs algorithm for DPMM (Algorithm 3)

For 𝑡 = 1, ..., 𝑇 (MCMC chain length):

Assign datum 𝑖 = 1, ..., 𝑁 according to Eq~(5). Update the posterior
distribution 𝑝(𝜃𝑘|{𝑦𝑗 ∶ 𝑧𝑗 = 𝑘}).
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Implementation notes

How do we implement this?
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Additional slides

CRP as predictive distribution.
Exchangeability.
De Finetti’s theorem.
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Predictive distribution (CRP)

The predictive distribution, with 𝐺 marginalized:

𝑝(𝜃𝑁+1 ∈ 𝐴|𝜃1∶𝑁) = 𝔼[1[𝜃𝑁+1 ∈ 𝐴]|𝜃1∶𝑁 ].

𝔼[1[𝜃𝑁+1 ∈ 𝐴]|𝜃1∶𝑁 ] = ∫ 1[𝜃𝑁+1 ∈ 𝐴]𝑝(𝐺|𝜃1∶𝑁)𝑑𝐺.

Since 𝜃𝑁+1 ∼ 𝐺, 𝔼[1[𝜃𝑁+1 ∈ 𝐴]|𝐺] = 𝐺(𝐴). Hence,
𝑝(𝜃𝑁+1 ∈ 𝐴|𝜃1∶𝑁) = 𝔼[𝐺(𝐴)|𝜃1∶𝑁 ].

𝔼[𝐺(𝐴)|𝜃1∶𝑁 ] = 𝐻′(𝐴) = 𝛼
𝛼 + 𝑁 𝐻(𝐴) + 1

𝛼 + 𝑁
𝑁

∑
𝑖=1

𝛿𝜃𝑖
(𝐴).
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Exchangeability

A sequence of random variables 𝑌1, ..., 𝑌𝑁 is exchangeable if for some
permutation 𝜎:

𝑝(𝑦1, ..., 𝑦𝑁) =𝑑 𝑝(𝑦𝜎(1), ..., 𝑦𝜎(𝑁))
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De Finetti’s theorem

Any infinite exchangeable sequence of random variables can be viewed as
i.i.d. draws from a latent distribution 𝐺.

𝑝(𝑦1, ..., 𝑦𝑁 |𝐺) = ∏
𝑖

𝑝(𝑦𝑖|𝐺)

i.i.d ⇒ Exchangeability but reverse is not true.
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