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Bayesian Inference

Posterior distribution of x ∈ X given we observe y ∈ Y:

p(x|y) = p(y|x)p(x)
p(y)

p(y|x): Data likelihood.

p(x): Prior distribution.

p(y): Marginal likelihood.
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Goal

Compute expectation of a function h w.r.t. posterior
distribution:

I = EX∼p(x|y)[h(X)] =

∫
h(x)p(x|y)dx,

where h is a known function that we can evaluate.
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Example 1: h(x) = x,

EX∼p(x|y)[X] =

∫
xp(x|y)dx.

Example 2: h(x) = 1[x > a] for x, a ∈ R,

EX∼p(x|y)[1[X > a]] = P(X > a|y) =
∫

1[x > a]p(x|y)dx.
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Solution I: Monte Carlo

If p(x|y) is a known distribution such as Normal distribution,
we can use Monte carlo approximation to compute the
expectation no matter how complex h is:

1

K

K∑
k=1

h(xk) → EX∼p(x|y)[h(X)] where xk ∼ p(x|y) as K → ∞,

by the Law of Large Numbers (LLN).
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Reality...

In many cases, integral p(y) =
∫
p(x, y)dx is not

analytically available.

Hence, p(x|y) is not known in practice.

An important exception is if the likelihood and prior are
conjugate distributions. In this case, p(x|y) is known and can be
sampled from.
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Solution II: Importance Sampling

Find a distribution q that is easy to sample from and
q(x) > 0 whenever p(x|y) > 0.

Propose xk ∼ q(x) for k = 1, ...,K.

Let w(x) = p(x|y)/q(x). Then,

1

K

K∑
k=1

w(xk)h(xk) → I,

by LLN.
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Derivation

I =

∫
h(x)p(x|y)dx

=

∫
h(x)

p(x|y)
q(x)

q(x)dx

=

∫
h(x)w(x)q(x)dx

= EX∼q[h(X)w(X)].

Therefore, importance sampling is a Monte Carlo algorithm
that approximates the expectation w.r.t to q with test function
h′(x) = h(x)w(x).
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Self Normalization

Problem: We assumed that p(x|y) can be evaluated. However,
this requires computing p(y),

p(y) =

∫
p(y|x)p(x)dx,

which is intractable in many settings. Therefore,
p(x|y) = p(x, y)/p(y) cannot be evaluated.
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Self Normalization

Let γ(x) = p(x, y) = p(y|x)p(x) and Z = p(y).

Define weight function: w(x) = γ(x)
Zq(x) .

Normalize: w̄k = w(xk)∑
j w(xj)

.

Then,

K∑
k=1

w̄kh(xk) →p I.
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Proof Sketch

K∑
k=1

w̄kh(xk) =

K∑
k=1

w(xk)h(xk)∑
j w(xj)

=

K∑
k=1

h(xk)
γ(xk)/Zq(xk)∑
j γ(xj)/Zq(xj)

=
K−1

∑K
k=1 h(xk)

γ(xk)
q(xk)

K−1
∑K

j=1
γ(xj)
q(xj)

.
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By LLN, the numerator converges to
∫
h(x)p(x, y)dx.

K−1
K∑
k=1

h(xk)
γ(xk)

q(xk)
→ EX∼q

[
h(X)γ(X)

q(X)

]
.

RHS =

∫
h(x)

γ(x)

q(x)
q(x)dx

=

∫
h(x)γ(x)dx

=

∫
h(x)p(x, y)dx.
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Denominator converges to Z = p(y).

K−1
K∑
j=1

γ(xj)

q(xj)
→ EX∼q

[
γ(X)

q(X)

]
.

RHS =

∫
γ(x)

q(x)
q(x)dx

=

∫
p(x, y)dx

= p(y).
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Therefore,

K∑
k=1

w̄kh(xk) →
∫
h(x)p(x, y)dx

p(y)
=

∫
h(x)p(x|y)dx.
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To conclude the proof of consistency, we invoke continuous
mapping theorem [Durrett, 2010, Thm 3.2.4]:
Let h be a measurable function and
Dh = {x : h is discontinuous at x}. If Xk →p X and
P (X ∈ Dh) = 0, then h(Xk) →p h(X).

Take Wk = (Xk, Yk), where Xk = 1
K

K∑
k=1

wkϕ(x
k
1:R) and

Yk =

(
1
K

K∑
k=1

wk

)
.

And, take h(Wk) = Xk/Yk to apply the continuous mapping
theorem.
This proof sketch should also apply to almost sure convergence,
if we invoke Strong Law of Large Numbers.
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Example: Small Tail Probabilities

From [Robert and Casella, 2013, Example 3.11]. Importance
sampling can be useful in many settings beyond Bayesian
statistics.
Let Z ∼ N(0, 1). Estimate P(Z > 4.5).

Solution 1: Zk ∼ N(0, 1). Compute

1

K

∑
k

1[zk > 4.5].

Solution 2: Xk ∼ q = Exponential(0.1). Compute

1

K

∑
k

1[xk > 4.5]
ϕ(xk)

q(xk)
.

Note: We need to choose q to cover the region of interest (i.e., x
for which h(x)p(x) > 0).
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Figure: Left: Standard normal distribution. Right: Exp(0.1). Red
vertical line is the threshold, a = 4.5.

18 / 63



Importance Sampling Sequential IS SMC References

Figure: Monte Carlo stimate of P (X > 4.5). Red: Simple Monte Carlo
sampling. Blue dashed: Importance sampling. Dotted black: truth.
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Brief Summary

Monte Carlo sampling can be used to approximate complex
integral numerically.

IS can improve efficiency in terms of number of samples
required.

IS can be useful with just a simple q even when direct
sampling is not possible.

IS yields estimate of the marginal likelihood: Z = p(y).

Remember to choose q such that q(x) > 0 whenever
p(x) > 0 (or h(x)p(x) > 0).

Generally, we want to choose q(x) to be similar to p(x).
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Sequential IS
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Sequential Importance Sampling

Now, let x = (x1, ..., xd) be a d-dimensional vector.
Goal: Compute

I =

∫
h(x1, ..., xd)p(x1, ..., xd|y)dx1...dxd.

Solution I: Importance sampling. We need to find a
multivariate proposal distribution that is easy to sample
from.

If xi ∈ R, we may be able to use multivariate Normal
distribution. But for general setting, finding q may be
difficult.

Also, curse of dimensionality: number of samples needed to
sufficiently approximate the integral grows exponentially
with dimension.
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Idea: Propose one dimension at a time from xi ∼ qi for
i = 1, ..., d.

Proposal: xki ∼ qi
Sample extenion: xk

1:i = (xk1, ..., x
k
i−1, x

k
i )

Weight computation: w(xki ) =
γi(x

k
1:i)

νi(xk
1:i)

,

where νi(x1:i) =
∏i

j=1 qj(xj |x1:j−1) and xi:j = (xi, ..., xj) for
0 < i < j.

24 / 63



Importance Sampling Sequential IS SMC References

Application: Hidden Markov Model

x1 x2 x3 xT

y1 y2 y3 yT

…

…

! f

g

x1 ∼ µ(x1)

xt|xt−1 ∼ f(xt|xt−1) for t = 2, ..., T

yt|xt ∼ g(yt|xt) for t = 1, ..., T.
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p(x) = µ(x1)
∏T

t=2 f(xt|xt−1)

p(y|x) =
∏T

t=1 g(yt|xt)
γ(x) = p(x,y) = µ(x1)g(y1|x1)

∏T
t=2 f(xt|xt−1)g(yt|xt).

Z = p(y) =
∫
p(x,y)dx
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Recursive weight Update

w(x1:t) =
γt(x1:t)

νt(x1:t)

=
γt−1(x1:t−1)

νt−1(x1:t−1)

f(xt|xt−1)g(yt|xt)
qt(xt|x1:t−1)

= w(x1:t−1)α(x1:t−1, xt).

Therefore, we should store the weight from previous iteration
and compute only the weight update function α(x1:t−1, xt) at
current iteration.
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Proposal

Prior: qt = f(xt|xt−1).

Weight function: α(x1:t−1, xt) = g(yt|xt).
Pro: Simplicity.
Con: May require large number of samples if f(xt|xt−1)
differs significantly from p(xt|x1:t−1, yt).
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Adapted: qt = p(xt|x1:t−1, yt)

p(xt|x1:t−1, yt) =
p(xt, yt|x1:t−1)

p(yt|x1:t−1)
=

g(yt|xt)f(xt|xt−1)∫
g(yt|xt)f(xt|xt−1)dxt

.

Weight update function: p(yt|x1:t−1)
−1.

Pro: Makes use of the latest observation to build a smart
proposal. Generally requires less number of samples
compared to prior (for example, to attain similar accuracy
of approximation).
Con: Need to analytically compute p(yt|x1:t−1).
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Example: Stochastic Volatility Model

X1 ∼ N (x1|0, σ2)

Xt|(Xt−1 = xt−1) ∼ N (xt|ϕxt−1, σ
2), t = 2, . . . , T,

Yt|(Xt = xt) ∼ N (yt|0, β2 exp(xt)), t = 2, . . . , T.

Xt: Unobserved volatility of an asset (e.g., stock price).

Yt: Observed change in the price of the asset.
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Figure: Top: Xt in black and variance of the observation i.e.,
β2exp(xt) in red. Bottom: Observation Yt.
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Illustration of SIS
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Weight degeneracy
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Brief Summary

SIS was originally designed for settings where we need to
approximate high dimensional integral or perform
imputation [Kong, Liu, and Wong. JASA, (1994)].

Particularly useful if the model exhibits a temporal
structure.

Only need to find local (low-dimensional) proposal
distributions.

Weights decay with T . For large T , SIS usually does not
work well (contradictory to the first point).

Only a handful of samples become relevant as T increases,
leading to waste of computational resources.
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SMC
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SIS with Resampling

Idea: Interleave resampling step to choose promising
particles.

Use the weights to prune the particles.

Sequential Monte Carlo methods refer to a class of
algorithms that involve sequential proposal, weight
computation, followed by (optional) resampling.

Best tutorial to get started in SMC (in my opinion):
[Doucet and Johansen, 2009].
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t = 1:

Proposal: xk1 ∼ q1(x1).

Weight computation: w(xk1) = α(xk1).

Weight normalization: w̄k
1 = w(xk1)/

∑
k′ w(x

k′
1 ).

t ≥ 2:

Resampling: j ∼ Multinomial(w̄1
t−1, ..., w̄

K
t−1).

Proposal: xkt ∼ qt(xt|xj1:t−1).

Extension: xk = (xj1:t−1, x
k
t ).

Weight computation: w(xk1:t) = α(xj1:t−1, x
k
t ).

Normalize the weights: w̄k
t = w(xk1:t)/

∑
k′ w(x

k′
1:t).
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Illustration of SMC on SV Model
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Filtering

Samples and the weights can be used to approximate the
filtering distribution:

p̂(xt|y1:t) =
K∑
k=1

w̄k
t δxk

t
(xt) for t = 1, ..., T.

or after resampling:

p̂(xt|y1:t) =
1

K

K∑
k=1

δxk
t
(xt) for t = 1, ..., T.
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Effectiveness of SMC on SV Model

Ran with 10, 000 particles. Computed empirical 95% confidence
interval. Contains the true xt about 93% of the time.
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Predictive Distribution

The generated samples can be used to build a predictive
distribution:

p(xt+1|y1:t) =
∫

p(xt+1|xt)p(xt|y1:t)dxt.

Therefore, take the test function h(xt+1) = p(xt+1|xt) (e.g.,
p(xt+1|xt) = f(xt+1|xt) in HMM application) and,

p̂(xt+1|y1:t) =
K∑
k=1

p(xt+1|xkt )w̄k
t δxk

t
(xt) for t = 1, ..., T.
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Applications

Online estimation: as the observation arrives, infer the
latent state.

E.g., fraud detection, missile tracking, robot localization,
etc.

An extension of SMC [Del Moral et al., 2006], can be used
in problems that do not exhibit temporal structure.

Phylogenetic inference [Bouchard-Côté et al., 2012].
Graph matching [Jun et al., 2017].

Inference over graphical models [Naesseth et al., 2014].

Probabilistic programming [Murray et al., 2017].
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Resampling Algorithms

Can reduce variance of the estimator by using better resampling
algorithms [Douc and Cappé, 2005]:

Stratified Resampling.

Residual Resampling.

Systematic Resampling.

Adaptive Resampling.
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