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Bayesian Inference

Posterior distribution of x € X given we observe y € J:

p(ylz)p(z)

p(zly) = o)

m p(y|z): Data likelihood.

m p(z): Prior distribution.

m p(y): Marginal likelihood.
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Goal

Compute expectation of a function h w.r.t. posterior
distribution:

I =Ex oy (X)) = [ ho)plaly)da,

where h is a known function that we can evaluate.
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Example 1: h(x) =z,

EmmMMZ/w@MM

Example 2: h(z) = 1[z > a] for z,a € R,

Emmmmx>m=PM>aw=/umwmwmm
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Solution I: Monte Carlo

If p(x|y) is a known distribution such as Normal distribution,
we can use Monte carlo approximation to compute the
expectation no matter how complex h is:

K

1

e Z h(zk) = Exp(aly) [M(X)] where 2, ~ p(z|y) as K — oo,
k=1

by the Law of Large Numbers (LLN).
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Reality...

= In many cases, integral p(y) = [ p(z,y)dz is not
analytically available.

m Hence, p(z|y) is not known in practice.

An important exception is if the likelihood and prior are
conjugate distributions. In this case, p(x|y) is known and can be
sampled from.
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Solution II: Importance Sampling

m Find a distribution ¢ that is easy to sample from and
q(z) > 0 whenever p(z|y) > 0.

m Propose zj ~ q(z) for k=1,..., K.
m Let w(z) = p(x|y)/q(z). Then,

by LLN.

8/63



Importance Sampling
0000000 e00000000000

Derivation

Therefore, importance sampling is a Monte Carlo algorithm
that approximates the expectation w.r.t to ¢ with test function

B (x) = h(z)w(x).
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Self Normalization

Problem: We assumed that p(z|y) can be evaluated. However,
this requires computing p(y),

ply) = / p(ylz)p(w)dz,

which is intractable in many settings. Therefore,
p(z|ly) = p(x,y)/p(y) cannot be evaluated.
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Self Normalization

m Let y(z) = p(z,y) = p(y|z)p(z) and Z = p(y).

y(
Zq(x)*

m Define weight function: w(z) =

m Normalize: w, = Zw(Txﬁzj)
J

Then,

K
Z u‘)kh(azk) —p I
k=1
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Proof Sketch

K
Db — w(xy)h(zy)
; k() ; ij(%)
K
_ . Y(wk)/Zq()
- ;h( S 2w Za(e;)

KT ) 3

1K v(zg)
K= Z] 1 q(zj)
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By LLN, the numerator converges to [ h(z)p(z,y)dz.

K

. A (zx) B(X)Y(X)
" kzlh(x’“)q@k)”“q[ 4(X) }

13 /63



Importance Sampling
000000000000 e000000

Denominator converges to Z = p(y).
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Therefore,
K
> auh() — LI [
k=1
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To conclude the proof of consistency, we invoke continuous
mapping theorem [Durrett, 2010, Thm 3.2.4]:

Let h be a measurable function and

Dy, = {z : h is discontinuous at z}. If X —, X and

P(X € Dp) =0, then h(Xj) —p h(X).

K
Take Wy, = (Xj, Y)), where X = & > wyo(ah.5) and

k=1
LK
k=1
And, take h(W}) = Xi/Y) to apply the continuous mapping

theorem.
This proof sketch should also apply to almost sure convergence,
if we invoke Strong Law of Large Numbers.
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Example: Small Tail Probabilities

From [Robert and Casella, 2013, Example 3.11]. Importance
sampling can be useful in many settings beyond Bayesian
statistics.

Let Z ~ N(0,1). Estimate P(Z > 4.5).

m Solution 1: Z; ~ N(0,1). Compute

1
% > 1z > 45).
k
= Solution 2: X} ~ ¢ = Exponential(0.1). Compute
¢(2k)
q(xk)

1
k

Note: We need to choose ¢ to cover the region of interest (i.e., z
for which h(x)p(z) > 0).
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Figure: Left: Standard normal distribution. Right: Exp(0.1). Red
vertical line is the threshold, a = 4.5.
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Figure: Monte Carlo stimate of P(X > 4.5). Red: Simple Monte Carlo
sampling. Blue dashed: Importance sampling. Dotted black: truth.
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Brief Summary

m Monte Carlo sampling can be used to approximate complex
integral numerically.

m IS can improve efficiency in terms of number of samples
required.

m IS can be useful with just a simple g even when direct
sampling is not possible.

m IS yields estimate of the marginal likelihood: Z = p(y).
m Remember to choose ¢ such that ¢(z) > 0 whenever
p(z) > 0 (or h(x)p(xz) > 0).

m Generally, we want to choose ¢(z) to be similar to p(x).
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Sequential IS
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Sequential Importance Sampling

Now, let & = (21, ..., z4) be a d-dimensional vector.
Goal: Compute

I:/h(ml,...,:Cd)p(xl,...,xd|y)dm1...d$d.

m Solution I: Importance sampling. We need to find a
multivariate proposal distribution that is easy to sample
from.
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Sequential Importance Sampling

Now, let & = (21, ..., z4) be a d-dimensional vector.
Goal: Compute

I:/h(ml,...,:Cd)p(xl,...,xd|y)dm1...d$d.

m Solution I: Importance sampling. We need to find a
multivariate proposal distribution that is easy to sample
from.

m If z; € R, we may be able to use multivariate Normal
distribution. But for general setting, finding ¢ may be
difficult.

m Also, curse of dimensionality: number of samples needed to
sufficiently approximate the integral grows exponentially
with dimension.
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Idea: Propose one dimension at a time from x; ~ ¢; for

i=1,..,d.
Proposal: xf ~ g
Sample extenion: xh = (zh, o zk k)
Weight computation:  w(z¥) = Zzg,}z;,

where v;(x1,) = H;‘:1 qj(xjlz1.5-1) and x5 = (x4, ..., x;) for
0<i<j.
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Application: Hidden Markov Model

uw f

l
090
& ®

z1 ~ p(z1)

x| ~ f(xy|xg—q) for t =2,...,T

8

Yelze ~ g(yelzy) for t =1,...,T.
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m p(a) = pu(z) [Ti—s f(@elze1)

= p(ylz) = [T 9(uilz)

m y(x) = p(x,y) = (1) gyle) T1s f(@ilze—1)g(ye|ze).
7 =py :fpa:,y)da:
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Recursive weight Update

Ve (21:t)

Vt($1:t)

Ye—1(x1e-1) f(@e|ze—1)9(ye|we)
Vicr(re-1)  q(@e]2e-1)

= w(l'l:tfl)a(ﬂfl:tfla 93t)~

w(r1y) =

Therefore, we should store the weight from previous iteration
and compute only the weight update function a(xy4—1, ;) at
current iteration.
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Proposal

m Prior: ¢; = f(x¢|zi—1).
m Weight function: a(x1..—1,2¢) = g(ye|ze).
m Pro: Simplicity.
m Con: May require large number of samples if f(x¢|as—1)
differs significantly from p(z¢|z1.t—1, yt)-
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m Adapted: ¢ = p(x¢|x1.0—1,Yt)

pEoydwia1) _  gelz) f(@ilzi1)
P(yt|r1:4-1) T 9(ytlwe) f (wilws—1)day

p(«%’t|$1:t—17yt) =

m Weight update function: p(y;|z1.¢—1)7 1.

m Pro: Makes use of the latest observation to build a smart
proposal. Generally requires less number of samples
compared to prior (for example, to attain similar accuracy
of approximation).

m Con: Need to analytically compute p(y:|z1.4—1)-
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Example: Stochastic Volatility Model

X1 ~ N(x1]0,0?)
Xt|(Xt71 = xtfl) NN($t|¢xt71702)7 t= PR
Yi|(Xy = m) ~ N(9]0, B2 exp(zy)), t=2,...,T.

~

m X;: Unobserved volatility of an asset (e.g., stock price).

m Y;: Observed change in the price of the asset.
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Figure: Top: X in black and variance of the observation i.e.,

B%exp(xy) in red. Bottom: Observation Y;. 5108
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[Mustration of SIS
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Weight degeneracy

2001 X Sample

Log weights
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Brief Summary

SIS was originally designed for settings where we need to
approximate high dimensional integral or perform
imputation [Kong, Liu, and Wong. JASA, (1994)].

Particularly useful if the model exhibits a temporal
structure.

Only need to find local (low-dimensional) proposal
distributions.

Weights decay with T'. For large T', SIS usually does not
work well (contradictory to the first point).

Only a handful of samples become relevant as T' increases,
leading to waste of computational resources.
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SIS with Resampling

m Idea: Interleave resampling step to choose promising
particles.

m Use the weights to prune the particles.

m Sequential Monte Carlo methods refer to a class of
algorithms that involve sequential proposal, weight
computation, followed by (optional) resampling.

m Best tutorial to get started in SMC (in my opinion):
[Doucet and Johansen, 2009).
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t=1:

m Proposal: ¥ ~ q1(21).

m Weight computation: w(z ) = a(z}).

= Weight normalization: @¥ = w(z)/ 32, w(zh).
t>2:

= Resampling: j ~ Multinomial(w; {, ..., w5 ;).

= Proposal: zf ~ qt(xt]a:jl':tfl).

m Extension: z* = (:cjl':tfl,xf).

m Weight computation: w(z¥,) = a(a],_,,z¥).

» Normalize the weights: @f = w(x¥,)/ > w(zl,).
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[Mustration of SMC on SV Model
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Filtering

m Samples and the weights can be used to approximate the
filtering distribution:

] =

p(ey1e) = u?f6zf (x¢) for t =1,...,T.

£
Il

1

or after resampling:

K
1
p(xe|y1:e) Zéw ) fort=1,...,T.
k:l
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Effectiveness of SMC on SV Model

Ran with 10,000 particles. Computed empirical 95% confidence
interval. Contains the true z; about 93% of the time.

P
‘1>=-. —
= @
E —
o -
= o
T T T T T
0 20 40 60 80 100
Time
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Predictive Distribution

m The generated samples can be used to build a predictive
distribution:

p(l’t+1|y1:t) = /p(l’tﬂ|$t)p($t’y1:t)d$t-

Therefore, take the test function h(ziy1) = p(xis1]ze) (e.g.,
p(zry1|xe) = f(x441]|ze) in HMM application) and,

K

Plaeilyre) = p(@ipaaf) o} o, (@) for t =1, T.
k=1
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Applications

m Online estimation: as the observation arrives, infer the
latent state.

m E.g., fraud detection, missile tracking, robot localization,
etc.

m An extension of SMC [Del Moral et al., 2006], can be used
in problems that do not exhibit temporal structure.

m Phylogenetic inference [Bouchard-Cété et al., 2012].
m Graph matching [Jun et al., 2017].

m Inference over graphical models [Naesseth et al., 2014].

m Probabilistic programming [Murray et al., 2017].
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Resampling Algorithms

Can reduce variance of the estimator by using better resampling
algorithms [Douc and Cappé, 2005]:

Stratified Resampling.

Residual Resampling.

Systematic Resampling.

Adaptive Resampling.
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