
Stochastic Variational Inference using Pyro

Stochastic Variational Inference using Pyro 1 / 40

Stochastic VI recap

Maximize ELBO:

𝜓∗ = max
𝜓

𝔼𝑞𝜓(𝑧)[log 𝑝(𝑥, 𝑧)] − 𝐻(𝑞𝜓)

Stochastic Variational Inference using Pyro 2 / 40

Stochastic VI recap

Draw a sample 𝑧 to approximate the gradient of the expectation:

∇𝛾𝔼𝑞𝛾(𝑧)[log 𝑝(𝑥, 𝑧) − log 𝑞𝛾(𝑧)].

REINFORCE (score function estimator).
Reparameterization.

Stochastic Variational Inference using Pyro 3 / 40

What is PPL?

High-level programming language designed for probabilistic modeling
by providing explicit mechanism to represent stochasticity (random
variables).
Most languages provide their own modeling language (e.g., JAGS,
Stan) or piggy-back on top of existing language like Python (e.g.,
PyMC, Pyro).
Abstracts away the difficulties of designing and developing inference
methods from modeling.

Previously, changing the model meant re-writing inference code.

Stochastic Variational Inference using Pyro 4 / 40

What is PPL?

Examples of PPLs:

BUGS/JAGS: Gibbs sampling based inference engine.
Stan/PyMC: Hamiltonian Monte Carlo sampling based inference
engine.
Tensorflow probability: Tensorflow backend.
Pyro: PyTorch backend with primary support for VI.
NumPyro: NumPy/JAX backend for Pyro with better support for
HMC (faster).
Blang: factor graphs + particle filter/MCMC inference engine.
Turing.jl: Julia; supports MCMC and VI.

More comprehensive list:
https://en.wikipedia.org/wiki/Probabilistic_programming.

Stochastic Variational Inference using Pyro 5 / 40

What is PPL?

Languages that utilize HMC or VI typically are built on top of an autograd
engine. For example, Pyro on top of PyTorch and Stan has their own
backend written in C++.

More customized PPLs are better suited for specific problems. For
example, Blang for discrete and combinatorially structured random
variables. BUGS/JAGS where conditionals are available.

Stochastic Variational Inference using Pyro 6 / 40

Pyro

A Probabilistic programming language (PPL) originally developed by
Uber AI with PyTorch backend. Currently maintained by Broad
Institute.
Primarily supports stochastic VI but also offers HMC (sampling
based) inference engine.
The modeling language builds on top of Python syntax.

Stochastic Variational Inference using Pyro 7 / 40

Pyro

Given a probabilistic model with latent variables denoted 𝑧, observations 𝑥,
and model parameters 𝜃, the posterior distribution is given by,

𝑝𝜃(𝑧|𝑥) = 𝑝𝜃(𝑥, 𝑧)
𝑝𝜃(𝑥) .

A Pyro model constitutes declaring

𝑧 using sample primitive (essentially a function)
𝑥 using sample with obs parameter set to the data, and
𝜃 using param primitive.

In addition, plate primitive allows for repetition in the model.

Stochastic Variational Inference using Pyro 8 / 40

Pyro: Bayesian linear regression

Relationship between ruggedness of terrain to GDP.

The ruggedness of terrain is inversely related to GDP, except in Africa.

𝐺𝐷𝑃𝑖 = 𝑎 + 𝑏𝑎𝑥𝑖,cont + 𝑏𝑟𝑥𝑖,ruggedness + 𝑏𝑎𝑟𝑥𝑖,cont𝑥𝑖,ruggedness.

Stochastic Variational Inference using Pyro 9 / 40

Pyro: Bayesian linear regression

Stochastic Variational Inference using Pyro 10 / 40

Pyro: Bayesian linear regression

Figure 1: https://pyro.ai/examples/intro_long.html#Inference-in-Pyro

Stochastic Variational Inference using Pyro 11 / 40

Pyro: Bayesian linear regression
import pyro.distributions as dist
import pyro.distributions.constraints as constraints

def simple_model(is_cont_africa, ruggedness, log_gdp=None):
a = pyro.param("a", lambda: torch.randn(()))
b_a = pyro.param("bA", lambda: torch.randn(()))
b_r = pyro.param("bR", lambda: torch.randn(()))
b_ar = pyro.param("bAR", lambda: torch.randn(()))
sigma = pyro.param("sigma", lambda: torch.ones(()),

constraint=constraints.positive)

mean = a + b_a * is_cont_africa + b_r * ruggedness +
b_ar * is_cont_africa * ruggedness

with pyro.plate("data", len(ruggedness)):
return pyro.sample("obs", dist.Normal(mean, sigma),

obs=log_gdp)
Stochastic Variational Inference using Pyro 12 / 40

Pyro: Bayesian linear regression

As it stands, the model is treating the regression coefficients as fixed
parameters to be estimated.

To make it random, we need to turn param primitives to sample
primitives.

Stochastic Variational Inference using Pyro 13 / 40

Pyro: sample

def sample(
name: str,
fn: pyro.distributions.Distribution,
*,
obs: typing.Optional[torch.Tensor] = None,
infer: typing.Optional[dict] = None

) -> torch.Tensor:
...

name: Specify name of the random variable.
fn: The distribution for name. Full list of distributions here.
obs: If the variable is observed, set it by passing in torch.Tensor
object.

Stochastic Variational Inference using Pyro 14 / 40

https://docs.pyro.ai/en/dev/distributions.html

Pyro: sample

import pyro.distributions as dist
import pyro.distributions.constraints as constraints

a = pyro.sample("a", dist.Normal(...))
b_a = pyro.sample("bA", dist.Normal(...))
b_r = pyro.sample("bR", dist.Normal(...))
b_ar = pyro.sample("bAR", dist.Normal(...))
sigma = pyro.sample("sigma", "???")

with pyro.plate("data", len(ruggedness)):
return pyro.sample("obs", dist.Normal(mean, sigma),

obs=log_gdp)

Stochastic Variational Inference using Pyro 15 / 40

Pyro: plate

Analogous to a for loop in probabilistic programming.
def plate(

name: str,
size: int,
*,
dim: Optional[int] = None,
**other_kwargs

) -> contextlib.AbstractContextManager:
...

size: number of items/data points in the plate.
subsample_size: support mini-batch.

Stochastic Variational Inference using Pyro 16 / 40

Pyro: plate

with pyro.plate("data", len(ruggedness)):
return pyro.sample("obs", dist.Normal(mean, sigma),

obs=log_gdp)

is equivalent to,
result = torch.empty_like(ruggedness)
for i in range(len(ruggedness)):

result[i] = pyro.sample(f"obs_{i}",
dist.Normal(mean, sigma), obs=log_gdp[i])

return result

Stochastic Variational Inference using Pyro 17 / 40

Pyro: param
A key-value parameter store (essentially a dict) that is persistent across
model calls. In REPL (e.g., Jupyter-lab), advised to call
clear_param_store() before re-running models/inference.
def param(
name: str,
init: Optional[Union[torch.Tensor, Callable[..., torch.Tensor]]]

= None,
*,
constraint: torch.distributions.constraints.Constraint =

constraints.real
) -> torch.Tensor:

...

init: initial value as torch.Tensor or a function that returns
torch.Tensor.
constraint: the support set (real, positive, etc), see here.

Stochastic Variational Inference using Pyro 18 / 40

https://docs.pyro.ai/en/stable/distributions.html#module-pyro.distributions.constraints

Pyro: SVI

The model program specifies generative process for the data, specifying
the relationship between latent variables, parameters, and the observed
variables.

To perform variational approximation, we need to specify the variational
approximation, which is referred to as the guide program.

guide takes the same set of arguments as model.
guide contains param and sample but without obs option (no
observation).
The variable names in model should appear in guide program; Pyro
will match them 1-1.

Stochastic Variational Inference using Pyro 19 / 40

Pyro: SVI

def model():
pyro.sample("z_1", dist.Normal(...))

def guide():
pyro.sample("z_1", dist.StudentT(...))

The names must match but the distributional specifications can differ.

Stochastic Variational Inference using Pyro 20 / 40

Pyro: Bayesian linear regression

Stochastic Variational Inference using Pyro 21 / 40

Pyro: inference

adam = pyro.optim.Adam({"lr": 0.02})
elbo = pyro.infer.Trace_ELBO()
svi = pyro.infer.SVI(model, auto_guide, adam, elbo)

losses = []
for step in range(10000 if not smoke_test else 2):

loss = svi.step(is_cont_africa, ruggedness, log_gdp)
losses.append(loss)
if step % 100 == 0:

logging.info("Elbo loss: {}".format(loss))

Stochastic Variational Inference using Pyro 22 / 40

Pyro: inference

Trace ELBO accepts num_particles as an input:

pyro.infer.Trace_ELBO(
num_particles=1,
max_plate_nesting=inf,
max_iarange_nesting=None,
vectorize_particles=False,
strict_enumeration_warning=True,
ignore_jit_warnings=False,
jit_options=None,
retain_graph=None,
tail_adaptive_beta=-1.0,

)

Stochastic Variational Inference using Pyro 23 / 40

Pyro: inference

Stochastic Variational Inference using Pyro 24 / 40

Pyro: inference

What can we do with the variational approximations?

Generate samples 𝑧𝑛 ∼ 𝑞𝜓(𝑧|𝑥𝑖) and plot the density.

Stochastic Variational Inference using Pyro 25 / 40

Pyro: inference

What can we do with the variational approximations?

Generate samples 𝑧𝑛 ∼ 𝑞𝜓(𝑧|𝑥𝑖) and plot the density.

Stochastic Variational Inference using Pyro 25 / 40

Pyro: inference

What can we do with the variational approximations?

Generate samples 𝑧𝑛 ∼ 𝑞𝜓(𝑧) and construct predictive intervals for the
observations:

Stochastic Variational Inference using Pyro 26 / 40

Pyro: inference

What can we do with the variational approximations?

Generate samples 𝑧𝑛 ∼ 𝑞𝜓(𝑧) and construct predictive intervals for the
observations:

Stochastic Variational Inference using Pyro 26 / 40

Pyro: autoguide

Pyro provides automatic guides for standard problems.

Rather than specifying the custom_guide program, we can use
auto_guide = pyro.infer.autoguide.AutoNormal(model)

Stochastic Variational Inference using Pyro 27 / 40

Pyro: autoguide

Full rank guide:

(𝑎, 𝑏𝑎, 𝑏𝑟, 𝑏𝑎𝑟, log 𝜎) ∼ MVN(𝜇, Σ)

mvn_guide = pyro.infer.autoguide.AutoMultivariateNormal(model)

Stochastic Variational Inference using Pyro 28 / 40

Pyro: autoguide

Stochastic Variational Inference using Pyro 29 / 40

Pyro: autoguide

Stochastic Variational Inference using Pyro 30 / 40

Pyro: autoguide

Stochastic Variational Inference using Pyro 31 / 40

Pyro: autoguide

Stochastic Variational Inference using Pyro 32 / 40

Pyro: autoguide

Stochastic Variational Inference using Pyro 33 / 40

Pyro: autoguide

Stochastic Variational Inference using Pyro 34 / 40

Mode seeking nature of KL

Figure 2: Figure 5.1 PML2

Stochastic Variational Inference using Pyro 35 / 40

Importance Weighted Auto-Encoders (IWAE)

The recognition network 𝑞𝜓(𝑧|𝑥) can be seen as an importance
distribution for the target distribution 𝑝𝜃(𝑧|𝑥).
Draw samples 𝑧𝑛 ∼ 𝑞𝜓(𝑧|𝑥):

𝑝𝜃(𝑥) = ∫ 𝑝𝜃(𝑥, 𝑧)𝑑𝑧 (1)

= ∫ 𝑝𝜃(𝑥, 𝑧)
𝑞𝜓(𝑧|𝑥) 𝑞𝜓(𝑧|𝑥)𝑑𝑧 (2)

≈ 1
𝑁

𝑁
∑
𝑛=1

𝑤(𝑥, 𝑧𝑛), (3)

where 𝑤(𝑥, 𝑧𝑛) = 𝑝𝜃(𝑥, 𝑧𝑛)/𝑞𝜓(𝑧𝑛|𝑥).

Stochastic Variational Inference using Pyro 36 / 40

Importance Weighted Auto-Encoders (IWAE)
Let

̂𝑝𝜃(𝑥) = 1
𝑁

𝑁
∑
𝑛=1

𝑤(𝑥, 𝑧𝑛).

Using Jensen’s inequality, we can show that IWAE provides multi-sample
ELBO:

𝔼𝑧1∶𝑁
[log ̂𝑝𝜃(𝑥)] ≤ log 𝔼𝑧1∶𝑁

[̂𝑝𝜃(𝑥)] (4)

= log 1
𝑁

𝑁
∑
𝑛=1

∫ 𝑤(𝑥, 𝑧𝑛)𝑞𝜓(𝑧𝑛|𝑥)𝑑𝑧𝑛 (5)

= log 1
𝑁

𝑁
∑
𝑛=1

∫ 𝑝(𝑥, 𝑧𝑛)𝑑𝑧𝑛 (6)

= log 𝑝(𝑥). (7)
Stochastic Variational Inference using Pyro 37 / 40

Importance Weighted Auto-Encoders (IWAE)
IWAE provides tighter lower bound than simple averaging: let
𝑧𝑛 ∼ 𝑞𝜓(𝑧|𝑥),

log (1
𝑁 ∑

𝑛
𝑤(𝑥, 𝑧𝑛)) ≥ 1

𝑁 ∑
𝑛

log 𝑤(𝑥, 𝑧𝑛), (8)

by Jensen since log is concave.

The RHS approximate ELBO,

1
𝑁 ∑

𝑛
log 𝑤(𝑥, 𝑧𝑛) = 1

𝑁 ∑
𝑛

log 𝑝𝜃(𝑥, 𝑧𝑛) − log 𝑞𝜓(𝑧𝑛|𝑥) (9)

≈ 𝔼𝑧∼𝑞𝜓
[log 𝑝𝜃(𝑥, 𝑧𝑛) − log 𝑞𝜓(𝑧𝑛|𝑥)]. (10)

Stochastic Variational Inference using Pyro 38 / 40

Importance Weighted Auto-Encoders (IWAE)

IWAE objective reduces mass seeking behavior and leads to more
diffuse variational approximation.
Increasing the sample size makes the bound tighter but can also make
the optimization problem more difficult.
Empirical evidence shows that the sweet spot seems to be around 10
to 20 samples.
IWAE seems to lead to better generalization/generative modeling but
can also incur high variance in the weights.

Stochastic Variational Inference using Pyro 39 / 40

Improvements

Variational Inference for Monte Carlo Objective (VIMCO) – Mnih and
Rezende (2016).

▶ Proposes a variance‐reduced gradient estimator for discrete
multi‐sample objectives.

▶ Uses a leave‐one‐out approach to compute baselines for the importance
weights, significantly reducing the variance.

Multiple Importance Sampling ELBO (MISELBO) – Kviman et al
(2022).

▶ Aims to alleviate mode‐seeking behavior by using a mixture of
approximations (multiple proposals).

▶ Combines them via importance sampling, thereby covering more of the
posterior mass.

Stochastic Variational Inference using Pyro 40 / 40

