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Variational Inference recap

Given observation x and latent variables z, we want to approximate the
posterior distribution:

p(zlz) =
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Variational Inference recap

Variational inference provides an optimization-based alternative to
sampling algorithms.

o Choose variational approximation ¢,,(z), paramterized by ).

@ Minimize KL-divergence, which is equivalent to maximizing ELBO:

v = maxE, . logp(z, 2)] — H(g,)
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Variational Inference recap

mz|x)
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o KLiglziy") || piz|x)

Figure 1: Section 10.1 from PML2
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Coordinate ascent variational inference

For z = z;,; and mean-field VI:

In this case, we can update the variational distribution for j with the rest
fixed:

*

q; o< exp([E_zj [logp(x, 2)]).

@ We need to compute the expectation wrt the Markov blanket of z;.
@ Possible for exponential family.
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Latent Dirichlet Allocation

OO

ol 0

Figure 2: Blei et al (2003)
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Latent Dirichlet Allocation: Topic modeling

e Data: M documents in a corpus.
@ Each document is represented as a mixture of latent topics.
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Latent Dirichlet Allocation: Topic modeling

e Data: M documents in a corpus.
@ Each document is represented as a mixture of latent topics.

Sample a probability distribution over the topics for each document:

6,, ~ Dirichlet(c).
Choose the number of words N ~ Poisson ().
For each word n =1, ..., N:

o Select a topic z,, ,, ~ Multinomial(6),

o Generate a word w,, ,, ~ p(w|z,, ), a probability distribution over
words for a given topic z,, parameterized by f.
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Latent Dirichlet Allocation: Topic modeling

0,, ~ Dirichlet(c) (1)
N,,, ~ Poisson(\) (2)
Zy.n ~ Multinomial(6) (3)
(4)

wm,n ~ p<‘|2’n, B)

Dirichlet prior on 6 and the Multinomial distribution over the topics z,, ,,
are in the exponential family and are conjugate distributions.
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Latent Dirichlet Allocation: Topic modeling

The posterior distribution:

_ plzwl, 0)p(0la)

p(wla, B)
e TIP3 120,018, O 01 )
p(wla; B) |

p(z, 0w, a, B) (5)

(6)
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Latent Dirichlet Allocation: Topic modeling

The marginal likelihood:

M Ny,
plwla, ) =[] / POy |cv) (H Zp(zm,nlﬁmm(wm,nlzm,mﬁ)) do,,
(7)

m,n
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Latent Dirichlet Allocation: Topic modeling

Variational approximation:

M No,

v, ot = 1%1 D 1(q,4(0,2)|[p(0, 2[w, a, B)).

How many parameters do we have? M x K + an\le N,, x K.
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Latent Dirichlet Allocation: Topic modeling

Use CAVI: for each document m, g, is Dirichlet and ¢,  is Multinomial
forn =1,...,N,,. The parameter updates: ’

¢n,k (8 Bk,wn exp([Eq[IOg(en,k)|7m]) (9)
Y,k = A+ Z P k- (10)
n=1

The closed form expectation can be derived:

=

E [log O] = V(o) — (Z ;)

7=1
VU is the digamma function (the first derivative of logI' function).
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Latent Dirichlet Allocation: Topic modeling

What about the parameters o, 37

These can be updated using Variational Expectation-Maximization
algorithm.

@ Variational EM was proposed by Neal and Hinton (1998).

@ In the E-step, maximize the ELBO with respect to variational
parameters.

@ In the M-step, maximize ELBO wrt «, 5.

Variational Inference 13/32



Latent Dirichlet Allocation: Topic modeling

“Arts” “Budgets” “Children” “Education”
NEW MILLION CHILDREN SCHOOL

TAX WOMEN STUDENTS

PROGRAM PEOPLE SCHOOLS

BUDGET CHILD EDUCATION

TE BILLION YEARS TEACHERS

PLAY FEDERAL FAMILIES HIGH
MUSICAL  YEAR V( < PUBLIC
BEST SPENDING PARENTS TEACHER
ACTOR NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITT

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make amark on the future of the performing arts with these grants an act
every bit as important as our traditional arcas of support in health, medical rescarch, education
and the social scrvices,” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be $200,000 for its new building, which
will house young artists and provide new public facilitics. The Metropolitan Opera Co. and
New York Philharmonic will receive $400,000 cach. The Juilliard School, where music and
the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter
of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100,000
donation, too.

Figure 3: Blei et al (2003).
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Latent Dirichlet Allocation: Topic modeling

@ 16,000 documents from Associated Press newswire stories.

@ Trained LDA model with 100-topics.
e Top words from each identified topics are shown above (note: topic

labeling is manually done post inference).
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Gradient-based optimization for VI

CAVI requires being able to compute the exact expectation (exponential
family).

@ To make VI applicable to broader settings, we want to utilize
gradient-based learning.

@ The major challenge is that we need to compute the gradient of the
ELBO, which involves computing the expectation:

V,E, (»llogp(z, 2) —logq, (2)].
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Stochastic optimization

Robbins and Munro (1951) showed that convergence is possible using only
an unbiased estimator of the gradient.

Let L(z, z,7) = logp(z,2) —logq,(2).

V.Ey olLe 2] =V, [ )Lz (11)
= /qv(z)VwL(m,z,'y)dz—/L(m,z,’y)quv(z)dz
(12)

Note: we invoke Leibniz theorem to interchange derivative and integral.
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Stochastic optimization

We can sample z,, ~ ¢, to approximate the first integral.

1
/q'y(z)v'yL(x7277)dz ~ N ZV,YL(IL’,Z,")/)

How do we approximate the second integral?

/L(:z:, 2,7V, (2)dz =77
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REINFORCE (Score function estimator)

Score function: V_ logq. (2).

V,4,(2) = 4,(2)V, logq,(2).

\Y% z
By 15,2V, o8, () = [ £l )y ()22 (19
:/L(w,z,’y)quw(z)dz. (14)
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REINFORCE (Score function estimator)

So we can sample z,, ~ ¢, (z) and estimate the second integrand:

N
/M%%V)VV%(Z) ~ %ZL@U,ZWV)% logq,(z,).  (15)

n=1
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REINFORCE (Score function estimator)

REINFORCE estimator is known to have high variance. We can reduce the
variance by using

@ Control variates,
@ Rao-Blackwellization,

where applicable.
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Reparameterization trick

Suppose the latent variable 2 is Normally distributed with v = (u, 0?).

Then, we can sample z,, ~ ¢, by first sampling €, ~ Normal(0, 1) and
Z, = Ml+0o-€,.

Then,
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Reparameterization trick

Generally, the idea is to reparameterize z = g(, €) where € ~ g, is free of
the variational parameters 7.

Examples:

e Normal: z = pu + oe€, € ~ Normal(0, 1).

o Exponential: z ~ Exp()) then z = —§ log(e), € ~ Uniform(0, 1).
@ Gumbel-softmax trick for discrete z.
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Reparameterization trick

Original form

i

~ ag(z[x)

Reparameterized form
l \%
z
V.;,f xx ~p(e)

Backprop

\5'

: Deterministic node — : Evaluation of f

. : Random node = : Differentiation of f

Figure 4: Figure 10.4 PML2
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Variational Auto-Encoders (VAE)

Auto-encoder is a neural network trained to learn low-dimensional
embedding of the input data by reconstruction.

o Input: x € X.
o Output: T € X.

By attempting to compress the input into a lower embededding, the neural
network architecture learns the essential features of the data.
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Variational Auto-Encoders (VAE)

There are two components of an auto-encoder:

e Encoder: ¢, : X' — 2.
@ Decoder: py: 2 — X.

1, 0 denote the parameters of encoder and decoder neural networks.

The original auto-encoder minimizes reconstruction error (loss function L):

0,y = rgglz L<$iap0(q'zp($i)))
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Variational Auto-Encoders (VAE)

D

Z

p(Z)

Figure 5: PML2
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Variational Auto-Encoders (VAE)

“Auto-Encoding Variational Bayes” by Kingma and Welling (2013)
proposed probabilistic formulation of the auto-encoder (over 40,000
citations).

@ The data is generated given latent z: py(z|2).
@ Prior on the latent: p(z) = N(0,1).
e Approximate the posterior py(z|z) o pg(x|2)p(2).
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Variational Auto-Encoders (VAE)

In the original paper: g, (z|z) = [ q,(24]7), where

Qw<zd|$) = N(Nw,d@?), 0121;,(1(35))-

® [y, 0, represent transformation of outputs from a neural network
parameterized by 1.
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Variational Auto-Encoders (VAE)

Reparameterization trick is used to separate the parameters i) from the
randomness in z:

Zq = My a(T) + 0y 4(T)eg,

where €, ~ N(0,1).

Note: in the original VAE fomrulation, only one € sample is taken.
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Variational Auto-Encoders (VAE)
Maximize ELBO as the loss:
V0" =maxEy (o [log pe(2]2)] = D gy (2[2)l[p(2))-

@ The first term aims to minimize the reconstruction error, commonly
use binary cross-entropy:

N
L(z,2) = — sz logZ; + (1 —z;)log(1 — Z,).
=1

@ The second term serves to regularize the neural network parameters.
@ The gradient optimization allows gradients to flow, allowing
optimization of both 1, 6.
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Variational Auto-Encoders (VAE)

Demo on Colab.
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